AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: TSI/ BlueSky

Pollutants: PM_{2.5} and PM₁₀ mass concentration

Time Resolution: 1-min

Type: Optical

Additional Information

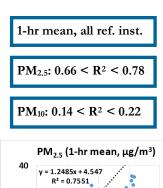
Field evaluation report:

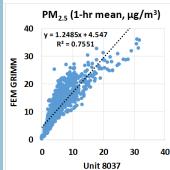
http://www.aqmd.gov/aqspec/evaluations/field

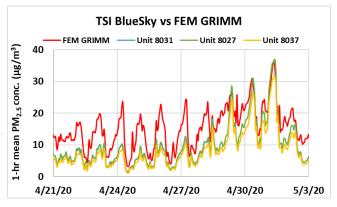
Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary


- Overall, the accuracy of the TSI BlueSky sensors was fairly constant (\sim 91% to 99%) over the range of PM_{2.5} mass concentration tested. Overall, the TSI BlueSky sensors overestimated PM_{2.5} measurements from FEM GRIMM in the laboratory experiments at 20 °C and 40% RH.
- The TSI BlueSky sensors exhibited high precision for all T/RH combinations and all PM concentrations.
- The TSI BlueSky sensors (IDs: 8031, 8027 and 8037) showed low to moderate intra-model variability for the field and laboratory evaluations.
- Data recovery was ~80 to 97% and 100% from all units in the field and laboratory evaluations, respectively.
- For PM_{2.5}, the TSI BlueSky sensors showed moderate to strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.66 < R² < 0.78) in the field evaluations and very strong correlations with GRIMM in the laboratory evaluations (R² > 0.99 for PM_{2.5}). For PM₁₀, the sensors showed very weak correlations with the corresponding GRIMM and T640 data (0.14 < R² < 0.22)
- The same three TSI BlueSky units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 04/08/2020 06/15/2020: the three TSI BlueSky sensors showed moderate to strong correlations with the corresponding FEM GRIMM and FRM T640 PM_{2.5} mass concentrations and showed very weak correlations with the corresponding GRIMM and T640 PM₁₀ mass concentrations.
- The units showed low intra-model variability and data recovery was $\sim 100\%$.

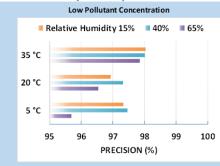
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

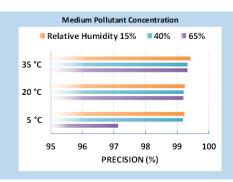
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a

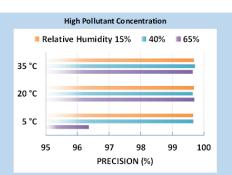
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

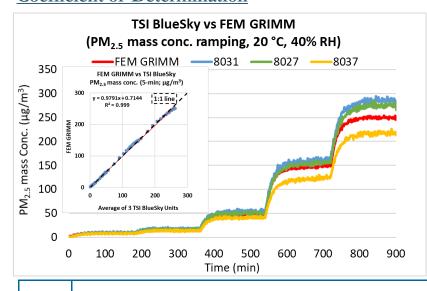
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	9.0	8.7	96.4
2	16.1	14.8	91.1
3	48.6	48.1	98.9
4	148.8	149.4	99.6
5	260.2	250.3	96.0


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15% RH), cold and humid (5 °C and 65% RH), hot and humid (35 °C and 65% RH), or hot and dry (35 °C and 15% RH).

Coefficient of Determination

The TSI BlueSky sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 > 0.99$) at 20 °C/40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the TSI BlueSky sensors' precision. At the set-points of RH changes, the sensors showed spiked conc. changes for at 5 °C and showed significant concentration variation for at 5 °C/65% RH.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.