AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Sensirion/ Nubo

Pollutants: PM_{1.0} and PM_{2.5} mass concentration

Time Resolution: 1-min

Type: Optical

Additional Information

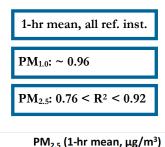
Field evaluation report:

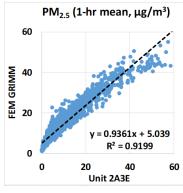
http://www.aqmd.gov/aqspec/evaluations/field

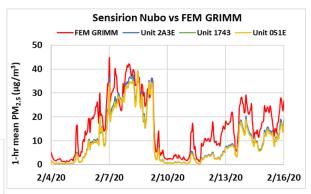
Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary


- Overall, the accuracy of the Sensirion Nubo was fairly constant (86% to 98% and 81% to 94%) over the range of PM_{1.0} and PM_{2.5} mass concentration tested, respectively. Overall, the Sensirion Nubo sensors overestimated PM_{1.0} measurements when PM_{1.0} concentrations were > 100 μg/m³ and overestimated and PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- The Sensirion Nubo sensors exhibited high precision for all T/RH combinations and all PM concentrations.
- The Sensirion Nubo sensors (IDs: 2A3E, 1743 and 051E) showed low intramodel variability for both the field and laboratory evaluations.
- Data recovery was ~97% and 100% from all units in the field and laboratory evaluations.
- For PM_{1.0}, the Sensirion Nubo sensors showed very strong correlations with the corresponding GRIMM data; and showed strong to very strong correlations with the ref. instruments from the field for PM_{2.5} ($0.76 < R^2 < 0.92$) and very strong correlations with GRIMM in the laboratory evaluations ($R^2 > 0.99$ for PM_{1.0} and PM_{2.5}).
- The same three Sensirion Nubo units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 12/27/2019 02/27/2020: the three Sensirion Nubo sensors showed very strong correlations with the corresponding GRIMM data for PM_{1.0}, and strong to very strong correlations with the corresponding FEM GRIMM and FEM BAM for PM_{2.5}.
- The units showed low intra-model variability and data recovery was $\sim 97\%$.

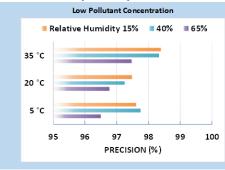
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments

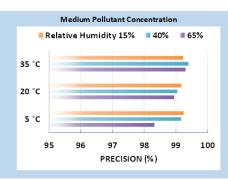
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

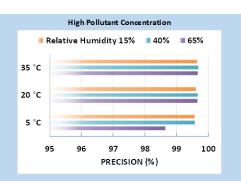
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

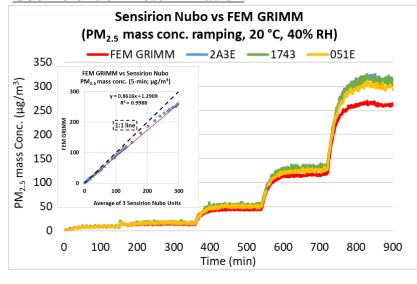
A (%) =
$$100 - \frac{|\overline{X} - \overline{R}|}{\overline{R}} * 100$$


Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	8.9	8.4	93.9
2	16.4	13.7	80.9
3	52.3	45.3	84.5
4	131.5	117.7	88.3
5	308.5	261.5	82.0


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The Sensirion Nubo sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 > 0.99$) at 20 °C/40% RH. For conc. ramping experiments of PM_{1.0}, please see the lab report.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the Sensirion Nubo sensor precision. At the setpoints of RH changes, the sensors reported spiked changes in concentration for all PM levels at 5 °C.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.