AQ-SPEC

Air Quality Sensor Performance Evaluation Center Evaluation Summary

Sensor Description

Manufacturer/Model: Kunak/ Air A10

Pollutants: PM_{1.0}, PM_{2.5} and PM₁₀ mass concentration

Time Resolution: 5-minute

Type: Optical

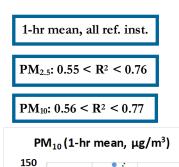
Additional Information

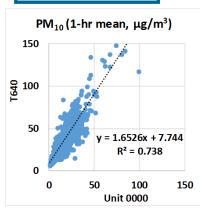
Field evaluation report:

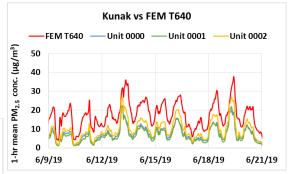
http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory


AQ-SPEC website:


http://www.aqmd.gov/aq-spec


- Overall, the accuracy of the Kunak sensors decreased as PM_{1.0} mass conc. increased and was fairly constant (66% to 72%) for the PM_{2.5} mass conc. range tested. The accuracy of the Kunak sensors was fairly constant (77% to 88% for GRIMM and 87% to 98% for APS) over the PM₁₀ mass conc. range tested. The Kunak sensors underestimated all PM mass conc. measurements from the reference instruments in the laboratory experiments.
- The Kunak sensors exhibited high precision for all T/RH combinations and all PM_{1.0} and PM_{2.5} concentrations except at 5 °C/65% RH.
- The Kunak sensors (IDs: 0000, 0001 and 0002) showed low and high intra-model variability in the field and in the laboratory evaluations, respectively.
- Data recovery was 100% from all units in the field and in the laboratory.
- For PM_{2.5}, the Kunak sensors showed moderate to strong correlations with the ref. instruments from the field (0.55< R² < 0.76) and very strong correlations with GRIMM in the laboratory studies (R² > 0.99 for PM_{1.0} and PM_{2.5}). For PM₁₀, the Kunak sensors showed moderate to strong correlations with the ref. instruments from the field (0.56 < R² < 0.77) and very strong correlations with GRIMM and APS in the laboratory studies (R² > 0.99).
- The same three Kunak units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 04/28/2019 07/11/2019: the three Kunak sensors showed moderate to strong correlations with the corresponding PM_{2.5} and PM₁₀ mass concentration as monitored by FEM BAM and T640.
- The units showed low intra-model variability and data recovery $\sim 100\%$.

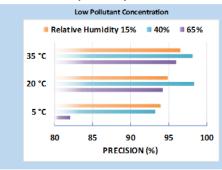
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

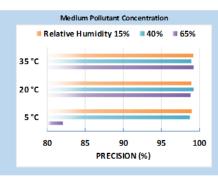
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

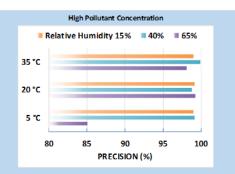
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

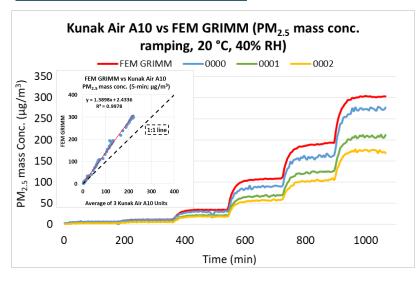
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	4.4	6.6	66.7
2	7.7	11.5	66.6
3	24.0	36.3	66.2
4	72.9	109.8	66.3
5	131.4	193.4	67.9
6	218.2	301.7	72.3


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The Kunak sensors showed very strong correlations with the corresponding FEM $PM_{2.5}$ data ($R^2 > 0.99$) at 20 °C and 40% RH. For conc. ramping experiments of $PM_{1.0}$ and PM_{10} , please see the lab report.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the Kunak sensor performance. At the set-points of RH changes, the Kunak sensors reported spiked changes in concentrations and showed significant conc. variation at 5 °C/65% RH.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.