AQ-SPEC Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Davis Instruments - AirLink

Pollutants: PM_{1.0} (field evaluation only), PM_{2.5}, and PM₁₀ (field evaluation only) mass concentration

> Time Resolution: 1-min

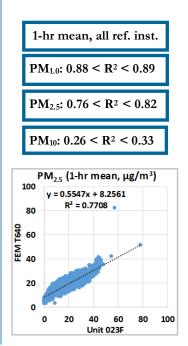
Additional Information

Field evaluation report:

http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aqspec/evaluations/laboratory


AQ-SPEC website: http://www.aqmd.gov/aq-spec


Evaluation Summarv

- The accuracy of the AirLink sensors for $PM_{2.5}$ was 92.3% to 97.8% in the lab. The AirLink sensors overestimated $PM_{2.5}$ at lower concentrations and underestimated $PM_{2.5}$ at higher concentrations compared to the Teledyne T640x in the lab.
- The AirLink sensors exhibited high precision for all conc., T/RH combinations for PM_{2.5}.
- The AirLink sensors showed low to moderate intra-model variability for $\mathrm{PM}_{2.5}$ in the lab.
- Data recovery in the field and lab was $\sim 100\%$ from the three units tested.
- AirLink sensors showed strong correlations with GRIMM and T640 in the field for both $PM_{1.0}$ (R²: 0.88-0.89) and $PM_{2.5}$ (0.76-0.82), very weak to weak correlations with reference instruments in the field for PM_{10} (R²: 0.26-0.33), and very strong correlations with the reference instruments in the laboratory studies (R² > 0.99 for PM_{2.5}).
- All of the same AirLink units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing) against reference PM instruments.

Field Evaluation Highlights

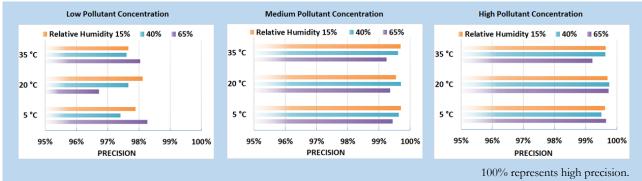
- Deployment period 04/02/2021 06/01/2021: the three AirLink sensors showed strong correlations with the PM_{1.0} and PM_{2.5} mass concentration as recorded by GRIMM and T640, and very weak to weak correlations with the corresponding GRIMM and T640 data for PM₁₀.
- The units showed data recovery was $\sim 100\%$.

Coefficient of Determination (R^2) quantifies how the three sensors followed the $PM_{1.0}$, $PM_{2.5}$, or PM_{10} concentration change by the reference instruments.

An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

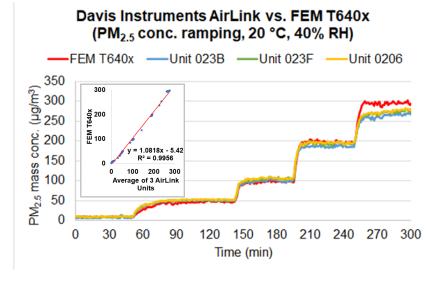
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})


A (%) = $100 - \frac{ \overline{X} - \overline{R} }{\overline{R}} * 100$			
Steady State #	Sensor Mean (µg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	8.74	9.05	96.5%
2	51.14	47.50	92.3%
3	103.57	97.71	94.0%
4	192.09	196.31	97.8%
5	273.76	296.41	92.4%

Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensors' readings at each ramping steady state are compared to the reference instrument.

A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.


Precision (PM_{2.5})

Sensors' ability to generate precise measurements of $PM_{2.5}$ concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%), cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

T.

The AirLink sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 > 0.99$) at 20 °C and 40% RH. At the time of lab testing, the reference monitor did not report PM_{1.0}. The AirLink sensors' field performance did not qualify it for PM₁₀ testing in the lab.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the AirLink sensors' precision.

Observed Interferents N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.