AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: APT/MINIMA

Pollutants: PM_{1.0}, PM_{2.5}, and PM₁₀ mass concentration

Time Resolution: 15-sec

Type: Optical

Additional Information

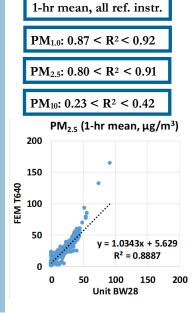
Field evaluation report:

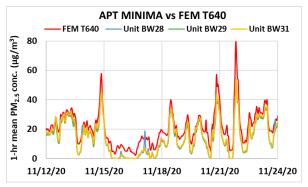
http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary

- Overall, the accuracy of the APT MINIMA sensors increased from $\sim 82\%$ to 96% as PM_{2.5} conc. increased over the tested concentration range. The APT MINIMA sensors overestimated PM_{2.5} measurements from FEM T640x in the laboratory experiments at 20 °C and 40% RH.
- The APT MINIMA sensors exhibited high precision for all T/RH combinations and all PM concentrations.
- The APT MINIMA sensors (IDs: BW28, BW29, BW31) showed low intra-model variability in both the field and laboratory evaluations.
- Data recovery was ~ 100% from all units in both field and laboratory evaluations.
- For PM_{1.0}, the APT MINIMA sensors showed strong to very strong correlations (0.87 < R^2 < 0.92) with the corresponding T640 data. For PM_{2.5}, the sensors showed strong to very strong correlations with the corresponding FEM T640 and FEM BAM data (0.80 < R^2 < 0.91) and very strong correlations with he FEM T640x in the laboratory evaluations (R^2 > 0.99). For PM₁₀, the sensors showed very weak to weak correlations (0.23 < R^2 < 0.42) with T640 and FEM BAM data in the field evaluations.
- The same three APT MINIMA units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 10/30/2020 to 12/29/2020: the three APT MINIMA sensors showed strong to very strong, strong to very strong, and very weak to weak correlations with the corresponding reference instruments for $PM_{1.0}$ $PM_{2.5}$ and PM_{10} mass concentrations, respectively.
- The units exhibited low intra-model variability and data recovery for all PM fractions was 100% from all units.

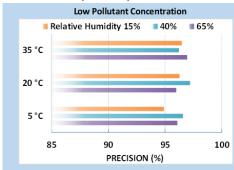
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

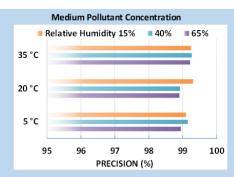
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

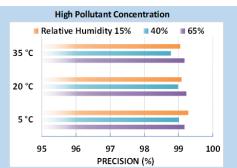
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

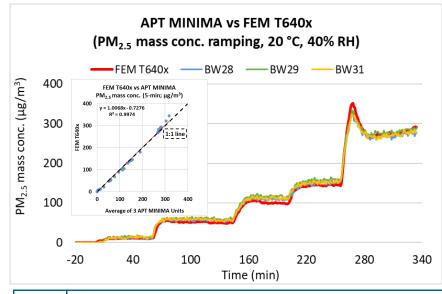
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


K			
Steady state #	Sensor Mean (PM _{2.5} , μg/m³)	FEM T640x (PM _{2.5} , μg/m³)	Accuracy (%)
1	13.3	11.3	82.2
2	57.1	50.4	86.6
3	112.4	100.1	87.7
4	154.5	145.6	93.9
5	280.9	291.9	96.2


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The APT MINIMA sensors showed very strong correlations with the corresponding FEM T640x PM_{2.5} data ($R^2 > 0.99$) at 20 °C and 40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the APT MINIMA sensors; at the setpoints of RH change, the sensors showed some small spiked conc. changes.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.