Laboratory Evaluation: Smart Citizen Kit v2.1

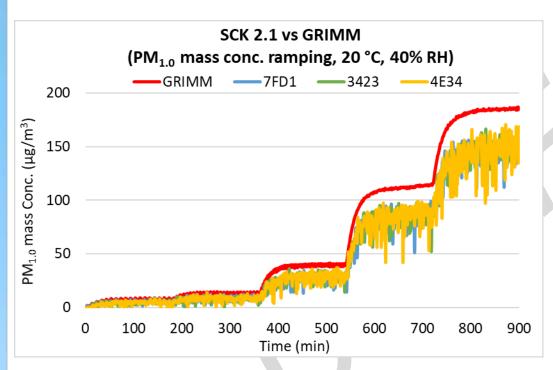
Background

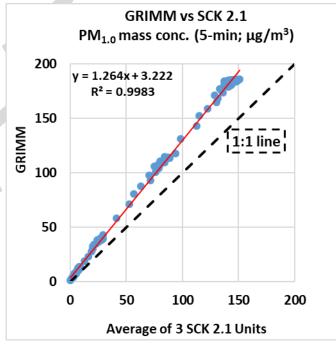
Three **Smart Citizen Kit v2.1** (hereinafter **SCK 2.1**) sensors (units IDs: 7FD1, 3423, 4E34) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (09/19/2019 to 11/19/2019) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three SCK 2.1 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

SCK 2.1 (3 units tested):

- ➤ Particle sensor: optical; non-FEM (model PMS 5003, Plantower)
- ➤ Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (μg/m³), temperature (°C), RH (%), pressure (Pa), noise level (dBA) and ambient light (Lux), VOC (ppb), equivalent carbon dioxide (ppm)
- ➤ Unit cost: \$119 (Smart Citizen Starter Kit)
- ➤ Time resolution: 1-min
- ➤ Units IDs: 7FD1, 3423, 4E34

GRIMM (reference method):


- ➤ Optical particle counter
- ➤ FEM PM_{2.5}
- ➤ Uses proprietary algorithms to calculate PM_{1.0}, PM_{2.5}, and PM₁₀ mass conc. from particle number measurements
- > Cost: ~\$25,000
- ➤ Time resolution: 1-min


Evaluation results for PM_{1.0} mass concentration

SCK 2.1 vs GRIMM

SCK 2.1 vs GRIMM (PM_{1.0} mass conc.)

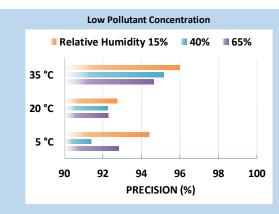
Coefficient of Determination

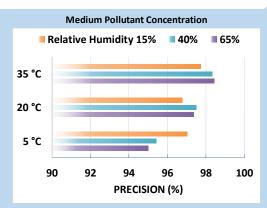
- The SCK 2.1 sensors tracked well with the concentration variation as recorded by the GRIMM in the concentration range of 0 \sim 200 µg/m³.
- The SCK 2.1 sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99)

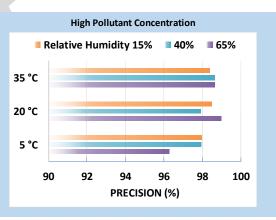
SCK 2.1 vs GRIMM PM_{1.0} Accuracy

Accuracy (20°C and 40% RH)

Steady state #	Sensor Mean (μg/m³)	GRIMM (μg/m³)	Accuracy (%)
1	4.7	7.5	62.8
2	8.5	12.9	65.5
3	28.0	39.6	70.6
4	86.6	114.1	75.9
5	147.8	185.5	79.7

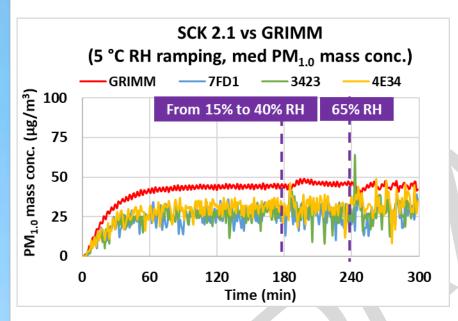

The SCK 2.1 sensors underestimated GRIMM PM_{1.0} mass concentrations at 20 °C and 40% RH. The
accuracy of the SCK 2.1 sensors increased (from ~63% to 80%) as PM_{1.0} mass concentrations increased.

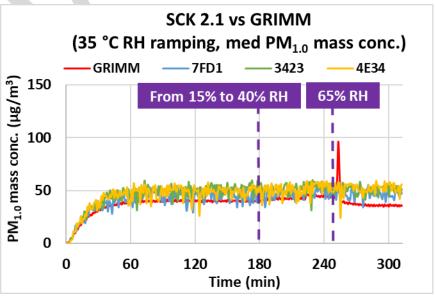

SCK v2.1: Data Recovery and Intra-model Variability


- Data recovery for PM_{1.0} mass concentration from all units was 100%
- Low PM_{1.0} measurement variations were observed between the SCK v2.1 sensors

SCK 2.1 PM_{1.0}: Precision

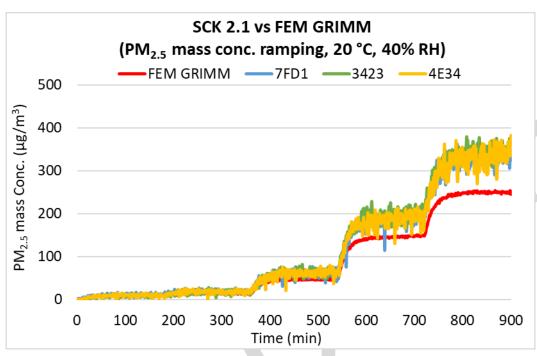
Precision (Effect of PM_{1.0} conc., Temperature and Relative Humidity)

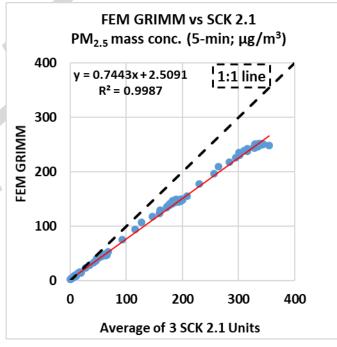



- Overall, the SCK 2.1 sensors showed high precision for all combinations of low, medium and high PM_{1.0} conc., T, and RH.
- Precision was relatively higher at higher PM_{1.0} mass concentrations.

SCK 2.1 PM_{1.0}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)


High Temp – RH ramping (medium conc.)


Evaluation results for PM_{2.5} mass concentration

SCK 2.1 vs FEM GRIMM

SCK 2.1 vs FEM GRIMM (PM_{2.5} mass conc.)

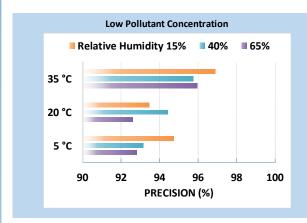
Coefficient of Determination

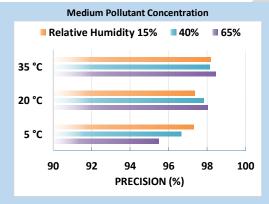
- The SCK 2.1 sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~250 μg/m³.
- The SCK 2.1 sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99)

SCK 2.1 vs FEM GRIMM PM_{2.5} Accuracy

Accuracy (20°C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	9.3	8.7	92.7
2	17.6	14.8	81.4
3	63.0	48.1	69.0
4	195.3	149.4	69.2
5	340.2	250.3	64.1

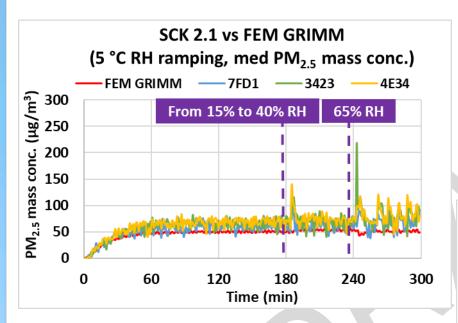

• The SCK 2.1 sensors overestimated FEM GRIMM PM_{2.5} mass concentrations at 20 °C and 40% RH. The accuracy of the SCK 2.1 sensors decreased (from ~ 93% to 64%) as PM_{2.5} mass concentrations increased.

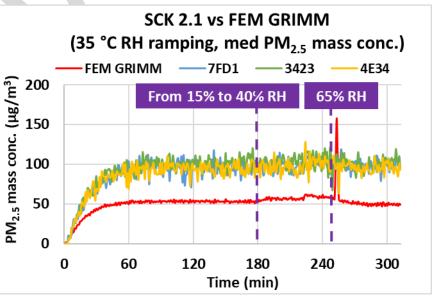

SCK v2.1: Data Recovery and Intra-model Variability


- Data recovery for PM_{2.5} mass concentration from all units was 100%
- Low PM_{2.5} measurement variations were observed between the SCK v2.1 sensors

SCK 2.1 vs FEM GRIMM ($PM_{2.5}$; 1-min mean)

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)




- Overall, the SCK 2.1 sensors showed high precision for all combinations of low, medium and high PM_{2.5} conc., T, and RH.
- Precision was relatively higher at higher PM_{2.5} mass concentrations.

SCK 2.1 vs PM_{2.5}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- ➤ Accuracy: Overall, the accuracy of the SCK 2.1 sensors increased (from ~63% to 80%) as PM_{1.0} mass concentrations increased; the accuracy decreased (from ~ 93% to 64%) as PM_{2.5} mass concentration increased. The SCK 2.1 sensors underestimated the corresponding PM_{1.0} measurements and overestimated the corresponding PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- ▶ Precision: The SCK 2.1 sensors showed high precision for all test combinations (PM concentrations, T and RH) for PM_{1.0} and PM_{2.5} mass concentrations
- ➤ Intra-model variability: Low intra-model variability was observed among the SCK 2.1 sensors for PM_{1.0} and PM_{2.5} mass concentrations.
- \triangleright Data Recovery: Data recovery for PM_{1.0} and PM_{2.5} mass concentration was 100% from all SCK 2.1 units
- \triangleright Coefficient of Determination: The SCK 2.1 sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- ➤ Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the SCK 2.1 sensors' precision; the sensors showed spiked conc. change at the RH change points at 5 °C and showed significant concentration variation at 5 °C/65% RH.