Laboratory Evaluation Sensirion SPS30

Background

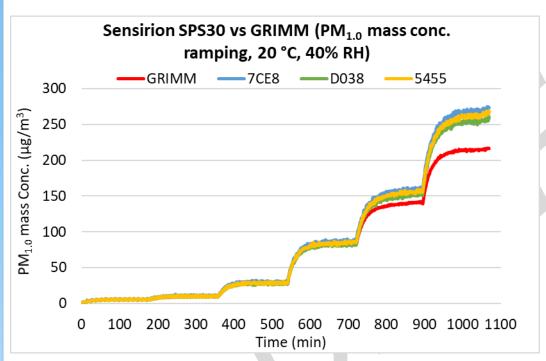
Three Sensirion SPS30 Evaluation Kits (hereinafter Sensirion SPS30) sensors (units IDs: 7CE8, D038, 5455) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (03/07/2019 to 05/14/2019) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three Sensirion SPS30 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

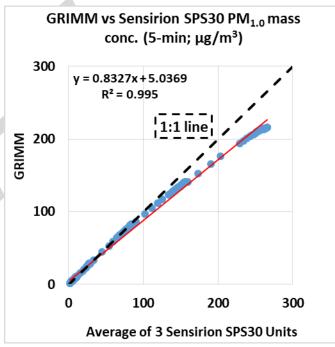
Sensirion SPS30 (3 units tested):

- ➤ Particle sensor: (optical; non-FEM)
- ➤ PM sensor: Sensirion SPS30
- ➤ Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ $(\mu g/m^3)$
- ➤ Also measures PM_{4.0} (µg/m³)
- ➤ Unit cost: \$100
- Time resolution: 1 second
- ➤ Units IDs: 7CE8, D038, 5455

GRIMM (reference method):

- ➤ Optical particle counter
- FEM PM_{2.5}
- ➤ Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ mass conc. from particle number measurements
- > Cost: ~\$25,000
- ➤ Time resolution: 1-min




Evaluation results for PM_{1.0} mass concentration

Sensirion SPS30 vs GRIMM

Sensirion SPS30 vs GRIMM (PM_{1.0} mass conc.)

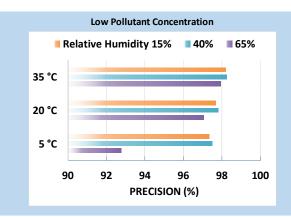
Coefficient of Determination

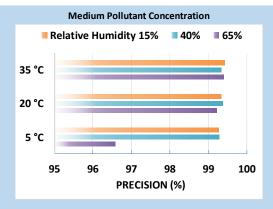
- The Sensirion SPS30 sensors tracked well with the PM_{1.0} concentration variation as recorded by the GRIMM in the concentration range of 0 ~200 μg/m³.
- The Sensirion SPS30 sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99).

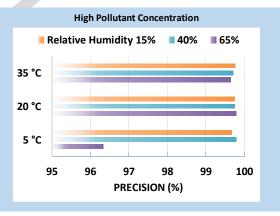
Sensirion SPS30 vs GRIMM PM_{1.0} Accuracy

Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	GRIMM (μg/m³)	Accuracy (%)
1	5.2	5.5	95.8
2	9.6	9.9	97.6
3	28.3	29.0	97.5
4	84.7	82.8	97.7
5	156.3	141.2	89.3
6	264.5	215.6	77.3

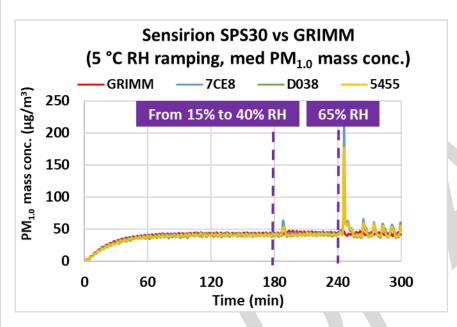

• Overall, the Sensirion SPS30 sensors overestimated GRIMM $PM_{1.0}$ mass concentration. The accuracy of the Sensirion SPS30 sensors was > 95% when $PM_{1.0}$ mass concentrations were < 100 μ g/m³ and decreased to ~77% when $PM_{1.0}$ mass concentrations were > 100 μ g/m³ for the $PM_{1.0}$ mass concentration range tested

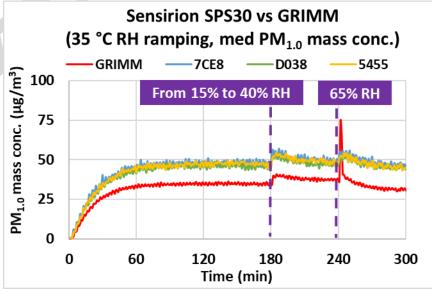

Sensirion SPS30: Data Recovery and Intra-model Variability


- Data recovery for PM_{1.0} mass concentration from all units was 100%
- Low PM_{1.0} measurement variations were observed between the Sensirion SPS30 sensors

Sensirion SPS30 PM_{1.0}: Precision

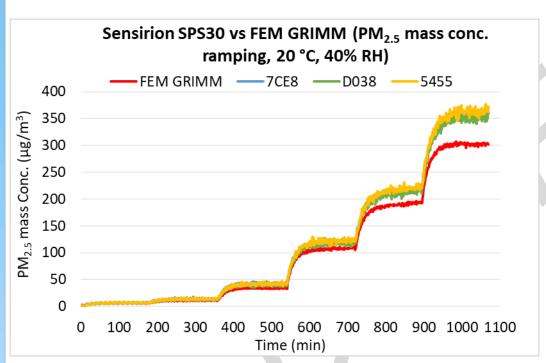
Precision (Effect of PM₁₀ conc., Temperature and Relative Humidity)



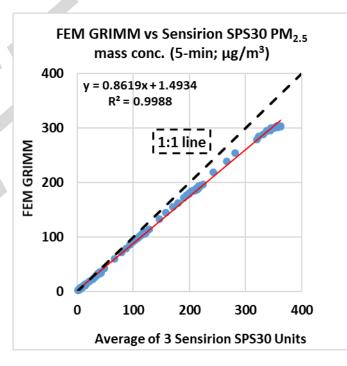

- Overall, the Sensirion SPS30 sensors showed high precision for all of the combinations of low, medium and high PM_{1.0} conc., T, and RH.
- Precision was relatively lower for 5 °C/65% RH at all PM_{1.0} levels; precision increased as PM_{1.0} concentrations increased.

Sensirion SPS30 PM_{1.0}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)


High Temp – RH ramping (medium conc.)

Evaluation results for PM_{2.5} mass concentration


Sensirion SPS30 vs FEM GRIMM

Sensirion SPS30 vs FEM GRIMM (PM_{2.5} mass conc.)

 The Sensirion SPS30 sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~300 μg/m³.

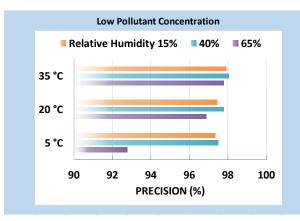
Coefficient of Determination

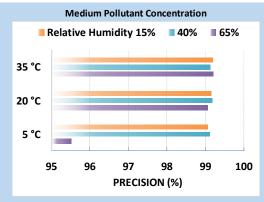
 The Sensirion SPS30 sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99).

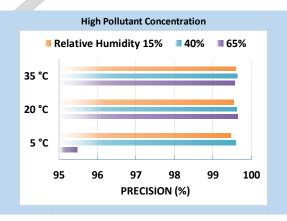
Sensirion SPS30 vs FEM GRIMM PM_{2.5} Accuracy

Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	6.7	6.5	96.2
2	13.3	11.4	83.4
3	41.1	34.8	81.8
4	120.8	108.8	89.0
5	218.8	193.5	86.9
6	359.4	302.7	81.3

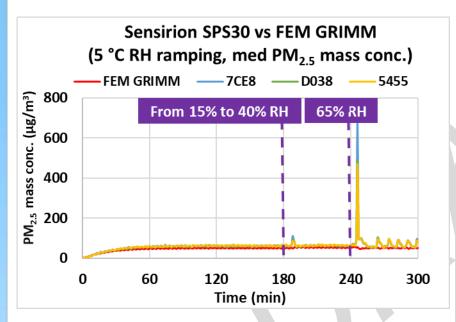

 The Sensirion SPS30 sensors overestimated FEM GRIMM PM_{2.5} mass concentration at 20 °C and 40% RH. The accuracy of the Sensirion SPS30 sensors was fairly constant (81% to 96%) for the PM_{2.5} mass concentration range tested.

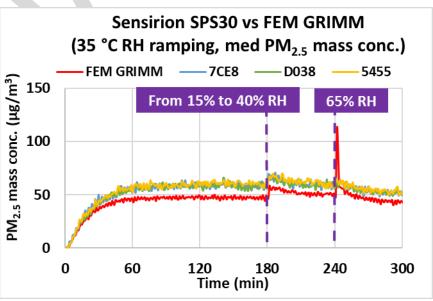

Sensirion SPS30: Data Recovery and Intra-model Variability


- Data recovery for PM_{2.5} mass concentration from all units was 100%
- Low PM_{2.5} measurement variations were observed between the Sensirion SPS30 sensors

Sensirion SPS30 PM_{2.5}: Precision

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)




- Overall, the Sensirion SPS30 sensors showed high precision for all of the combinations of low, medium and high PM_{2.5} conc., T, and RH.
- Precision was relatively lower for 5 °C/65% RH at all PM_{2.5} levels; precision increased as PM_{2.5} concentrations increased.

Sensirion SPS30 PM_{2.5}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- **Accuracy**: Overall, the accuracy of the Sensirion SPS30 was > 95% when PM_{1.0} mass concentrations were < 100 μg/m³ and decreased to ~77% when PM_{1.0} mass concentrations were > 100 μg/m³ for the PM_{1.0} mass concentration range tested and was fairly constant (81% to 96%) for the PM_{2.5} mass concentration range tested. Overall, the Sensirion SPS30 sensors overestimated PM_{1.0} and PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- ▶ Precision: The Sensirion SPS30 sensors showed high precision for all test combinations (PM concentrations, T and RH) for both PM_{1.0} and PM_{2.5} mass concentrations except at 5 °C/65% RH.
- ➤ Intra-model variability: low intra-model variability was observed among the Sensirion SPS30 sensors.
- \triangleright Data Recovery: Data recovery for PM_{1.0} and PM_{2.5} mass concentration from all units was 100%.
- \triangleright Coefficient of Determination: The Sensirion SPS30 sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- ➤ Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Sensirion SPS30's precision. At the set-points of RH changes, the Sensirion SPS30 sensors reported spiked changes in concentration and showed significant variation in concentration at 5 °C/65% RH.