Laboratory Evaluation Sensirion Nubo

Background

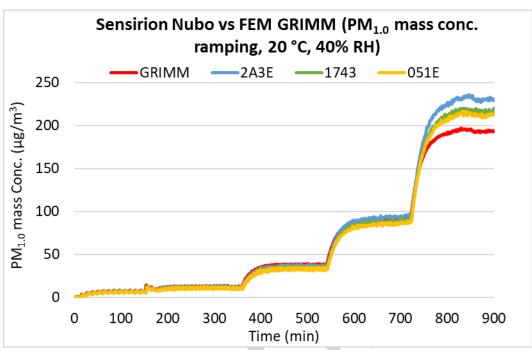
Three **Sensirion Nubo** sensors (units IDs: 2A3E, 1743, 051E) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (12/27/2019 to 02/27/2020) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three Sensirion Nubo units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

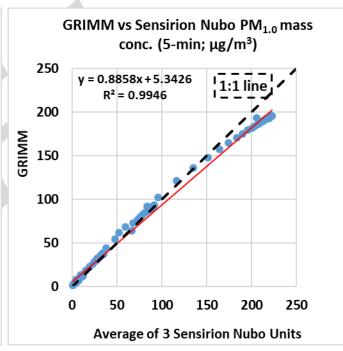
Sensirion Nubo (3 units tested):

- ➤ Particle sensor: optical; non-FEM (model: SPS30, Sensirion)
- Each unit reports: PM_{1.0} and PM_{2.5} (μg/m³), temperature (°C), RH (%), dew point (°C)
- ➤ PM₁₀ algorithm measurement is currently under development by the manufacturer
- ➤ Unit cost: \$2000 per unit with a yearly SaaS at \$500
- ➤ Time resolution: 1-min
- ➤ Units IDs: 2A3E, 1743, 051E

GRIMM (reference method):

- ➤ Optical particle counter
- > FEM PM_{2.5}
- ➤ Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ mass conc. from particle number measurements
- > Cost: ~\$25,000
- > Time resolution: 1-min




Evaluation results for PM_{1.0} mass concentration

Sensirion Nubo vs GRIMM

Sensirion Nubo vs GRIMM (PM_{1.0} mass conc.)

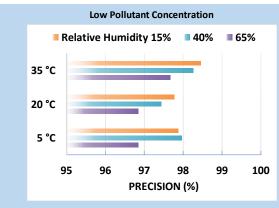
Coefficient of Determination

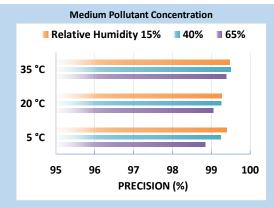
- The Sensirion Nubo sensors tracked well with the PM_{1.0} concentration variation as recorded by the GRIMM in the concentration range of 0 ~200 µg/m³.
- The Sensirion Nubo sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99).

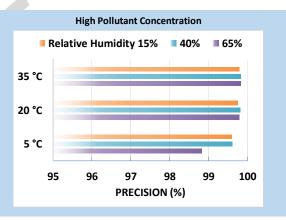
Sensirion Nubo vs GRIMM PM_{1.0} Accuracy

Accuracy* (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	GRIMM (μg/m³)	Accuracy (%)
1	6.6	7.2	92.3
2	10.7	12.0	89.4
3	34.6	37.8	91.4
4	90.6	92.1	98.4
5	219.8	193.5	86.4

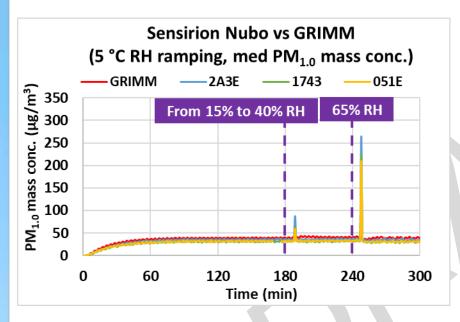

• Overall, the Sensirion Nubo sensors overestimated GRIMM $PM_{1.0}$ measurements when $PM_{1.0}$ mass concentrations were > 100 $\mu g/m^3$. The accuracy of the Sensirion Nubo sensors fairly constant (86% to 98%) over the range of $PM_{1.0}$ mass concentration tested.

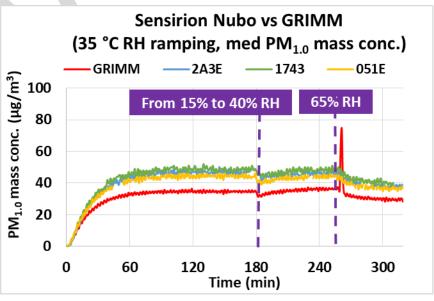

Sensirion Nubo: Data Recovery and Intra-model Variability


- Data recovery for PM_{1.0} mass concentration from all units was 100%
- Low PM_{1.0} measurement variations were observed between the Sensirion Nubo sensors

Sensirion Nubo PM_{1.0}: Precision

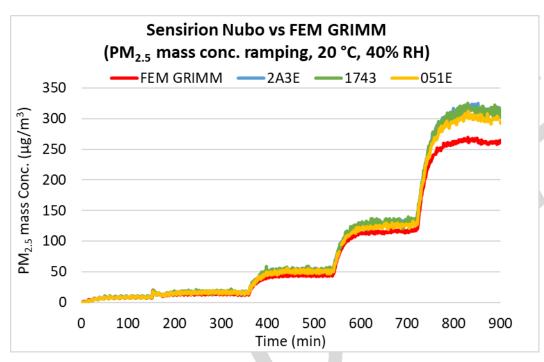
Precision (Effect of PM_{1.0} conc., Temperature and Relative Humidity)

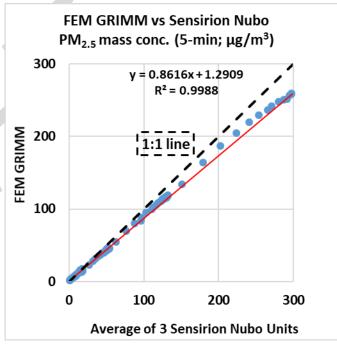



- Overall, the Sensirion Nubo sensors showed high precision for all of the combinations of low, medium and high PM_{1.0} conc., T, and RH.
- Precision was relatively higher at higher PM_{1.0} mass concentrations.

Sensirion Nubo PM_{1.0}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)


High Temp – RH ramping (medium conc.)


Evaluation results for PM_{2.5} mass concentration

Sensirion Nubo vs FEM GRIMM

Sensirion Nubo vs FEM GRIMM (PM_{2.5} mass conc.)

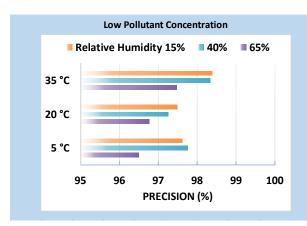
Coefficient of Determination

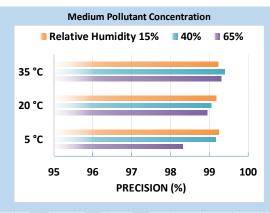
- The Sensirion Nubo sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~250 μg/m³.
- The Sensirion Nubo sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99).

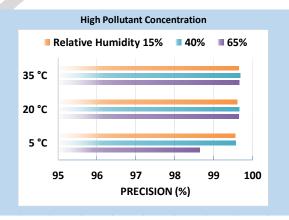
Sensirion Nubo vs FEM GRIMM PM_{2.5} Accuracy

Accuracy* (20 °C and 40% RH)

Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	8.9	8.4	93.9
2	16.4	13.7	80.9
3	52.3	45.3	84.5
4	131.5	117.7	88.3
5	308.5	261.5	82.0

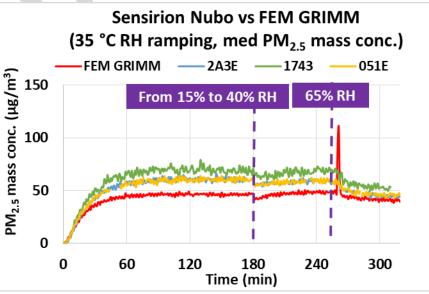

The Sensirion Nubo sensors overestimated FEM GRIMM PM_{2.5} mass concentration at 20 °C and 40% RH. The accuracy of the Sensirion Nubo sensors was fairly constant (81% to 94%) for the PM_{2.5} mass concentration range tested.


Sensirion Nubo: Data Recovery and Intra-model Variability


- Data recovery for PM_{2.5} mass concentration from all units was 100%
- Low PM_{2.5} measurement variations were observed between the Sensirion Nubo sensors

Sensirion Nubo PM2.5: Precision

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)


- Overall, the Sensirion Nubo sensors showed high precision for all of the combinations of low, medium and high PM_{2.5} conc., T, and RH.
- Precision was relatively higher at higher PM_{2.5} mass concentrations.

Sensirion Nubo PM_{2.5}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- Accuracy: Overall, the accuracy of the Sensirion Nubo sensors fairly constant (86% to 98% and 81% to 94%) over the range of PM_{1.0} and PM_{2.5} mass concentration tested, respectively. Overall, the Sensirion Nubo sensors overestimated PM_{1.0} measurements when PM_{1.0} mass concentrations were > 100 μg/m³ and overestimated PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- ▶ Precision: The Sensirion Nubo sensors have high precision for all test combinations (PM concentrations, T and RH) for both PM_{1.0} and PM_{2.5} mass concentrations.
- > Intra-model variability: low intra-model variability was observed among the Sensirion Nubo sensors.
- ➤ Data Recovery: Data recovery for PM_{1.0} and PM_{2.5} mass concentration from all units was 100%.
- \triangleright Coefficient of Determination: The Sensirion Nubo sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- ➤ Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Sensirion Nubo's precision. At the set-points of RH changes, the Sensirion Nubo sensors reported spiked changes in concentrations for all PM levels at 5 °C.