Laboratory Evaluation Kunak Air A10 - PM

Background

Three **Kunak Air A10** (Hereinafter **Kunak**) sensors (units IDs: 0000, 0001 and 0002) were fieldtested at the South Coast AQMD Rubidoux fixed ambient monitoring station (04/28/2019 to 07/11/2019) under ambient environmental conditions and have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three Kunak units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Kunak (3 units tested):

Particle sensor: AlphaSense OPC N3 (optical; non-FEM)

- Gas sensors: AlphaSense B4 series (electrochemical; non-FEM)
- Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)¹, Ozone (ppb), CO (ppb), NO, NO₂, NO_x (ppb), temperature (°C), RH (%), pressure, ²Wind Speed (km/h), ²Wind Direction (degree)
- ³Unit cost: ~\$7,900 (PM + Gas); \$3,000 (PM only) and \$5,000 (4 gases, temp/RH, anemometer and solar panel)

➤ Time resolution: 5-min

▶ Units IDs: 0000, 0001, 0002

Note: all results presented here are 5-min averages due to the 5-min time resolution of the Kunak sensors

¹Parameters tested in this laboratory evaluation

²Only available in Unit 0002

³4G LTE, 9w solar panel, includes 1-yr cell connectivity, tech support, cloud data access for configuration, calibration, firmware upgrade, alarms, data validation, reporting, advanced analytics, APIrest.

GRIMM (reference method):

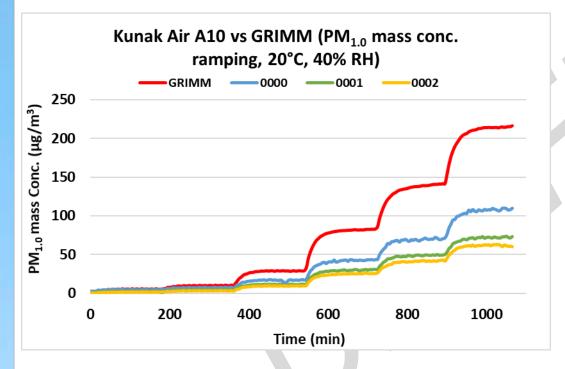
- > Optical particle counter
- ► FEM PM_{2.5}
- Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ mass conc. from particle number measurements
- ≻ Cost: ~\$25,000
- ➤ Time resolution: 1-min

TSI APS 3321 (reference method for PM₁₀ mass):

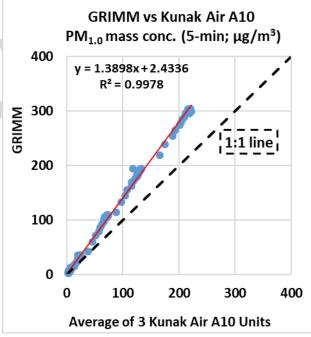
- ➤ Aerodynamic particle sizer
- \blacktriangleright Measures particles from 0.5 to 20 μ m
- Uses a patented, double-crest optical system for unmatched sizing accuracy
- ➤ Cost: ~\$50,000

Evaluation results guideline

- Kunak Air A10 vs GRIMM PM_{1.0} mass concentration
- Kunak Air A10 vs FEM GRIMM PM_{2.5} mass concentration
- Kunak Air A10 vs GRIMM vs APS PM₁₀ mass concentration



Kunak Air A10


Evaluation results for PM_{1.0} mass concentration

Kunak vs GRIMM

Kunak vs GRIMM (PM_{1.0} mass conc.)

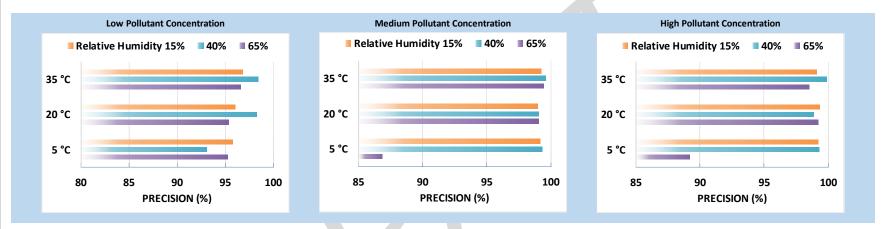
Coefficient of Determination

- The Kunak sensors tracked well with the $PM_{1.0}$ concentration variation as recorded by the GRIMM in the concentration range of 0 ~200 µg/m³.
- The Kunak sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99).

Kunak vs GRIMM PM_{1.0}: Accuracy

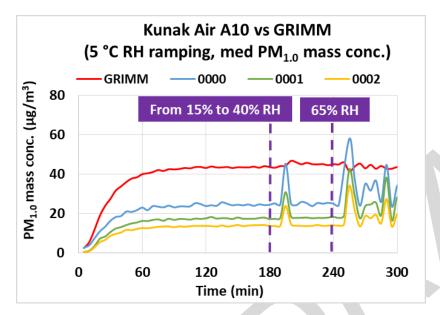
Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m ³)	GRIMM (µg/m³)	Accuracy (%)	
1	2.9	5.5	52.7	
2	5.0	10.0	50.1	
3	13.0	29.9	43.4	
4	33.3	83.4	39.9	
5	54.1	141.1	38.3	
6	80.8	215.0	37.6	

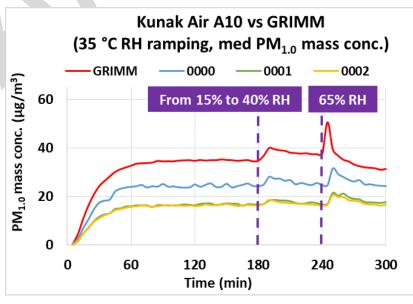

 The Kunak sensors underestimated GRIMM PM_{1.0} mass concentration. The accuracy of the Kunak sensors decreased as PM_{1.0} mass concentrations increased.

Kunak : Data Recovery and Intra-model Variability

- Data recovery for PM_{1.0} mass concentration from all units was 100%
- High PM_{1.0} measurement variations were observed between the Kunak sensors

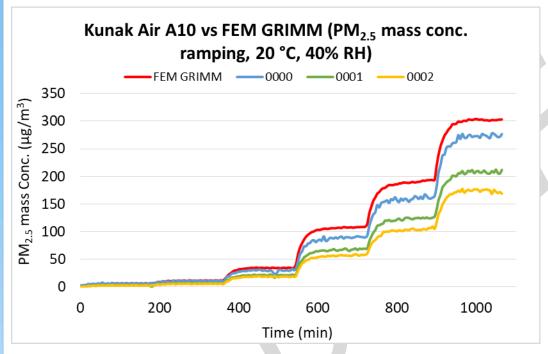

Kunak PM_{1.0}: Precision

• Precision (Effect of PM_{1.0} conc., Temperature and Relative Humidity)


Overall, the Kunak sensors showed high precision for all of the combinations of low, medium and high PM_{1.0} conc., T and RH except at medium and high PM_{1.0} conc. under 5 °C/65% RH.

Kunak PM_{1.0}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)


High Temp – RH ramping (medium conc.)

Evaluation results for PM_{2.5} mass concentration

Kunak vs FEM GRIMM

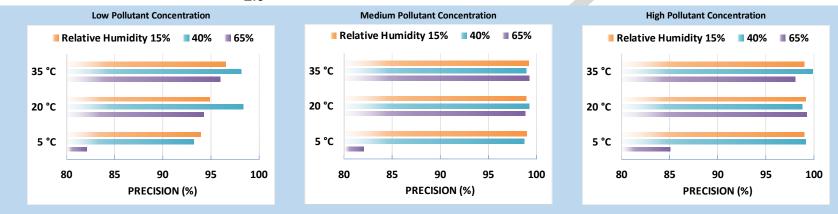
Kunak vs FEM GRIMM (PM_{2.5} mass conc.)

- Coefficient of Determination
- FEM GRIMM vs Kunak Air A10 PM_{2.5} mass conc. (5-min; µg/m³) 400 y = 1.3898x + 2.4336 R² = 0.9978 200 100 0 100 200 300 400 Average of 3 Kunak Air A10 Units
- The Kunak sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 ${\sim}300~\mu\text{g/m}^3.$
- The Kunak sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99)

Kunak vs FEM GRIMM PM_{2.5} Accuracy

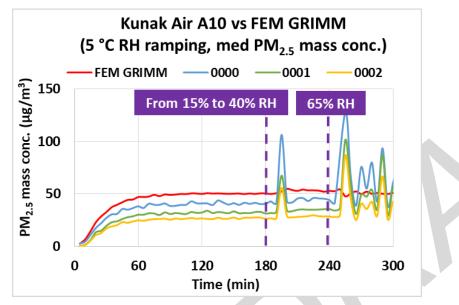
Accuracy (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m ³)	FEM GRIMM (µg/m ³)	Accuracy (%)	
1	4.4	6.6	66.7	
2	7.7	11.5	66.6	
3	24.0	36.3	66.2	
4	72.9	109.8	66.3	
5	131.4	193.4	67.9	
6	218.2	301.7	72.3	

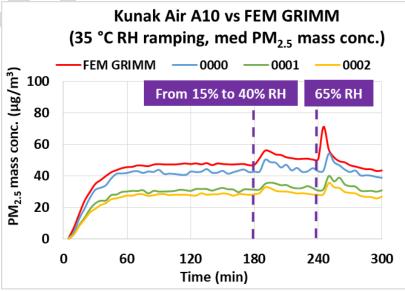

The Kunak sensors underestimated FEM GRIMM PM_{2.5} mass concentration at 20 °C and 40% RH. The accuracy of the Kunak sensors was fairly constant (66% to 72%) for the PM_{2.5} mass concentration range tested.

Kunak : Data Recovery and Intra-model Variability

- Data recovery for PM_{2.5} mass concentration from all units was 100%
- High PM_{2.5} measurement variations were observed between the Kunak sensors


Kunak PM_{2.5}: Precision

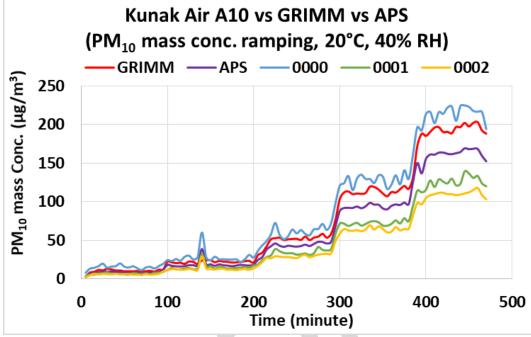
• Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)


• Overall, the Kunak sensors showed high precision for all of the combinations of low, medium and high $PM_{2.5}$ conc., T and RH except at 5 °C/65% RH for all $PM_{2.5}$ levels

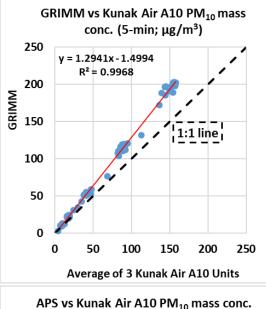
Kunak PM_{2.5}: Climate Susceptibility

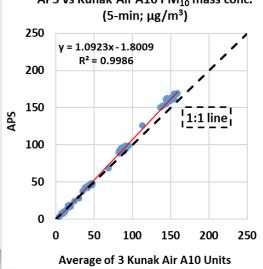
Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)


Discussion (PM_{1.0} and PM_{2.5})

- Accuracy: Overall, the accuracy of the Kunak decreased as PM_{1.0} mass concentrations increased and was fairly constant (66% to 72%) for the PM_{2.5} mass concentration range tested. The Kunak sensors underestimated PM_{1.0} and PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- Precision: The Kunak sensors showed high precision for all test combinations (PM concentrations, T and RH) for both PM_{1.0} and PM_{2.5} mass concentrations except at 5 °C/65% RH.
- > Intra-model variability: high intra-model variability was observed among the Kunak sensors.
- > Data Recovery: Data recovery for $PM_{1.0}$ and $PM_{2.5}$ mass concentration from all units was 100%.
- Coefficient of Determination: The Kunak sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Kunak's precision. The Kunak sensors showed some small spikes at the RH set-points and showed significant variation in concentration at 5 °C/65% RH; this could be due to the RH transient effect produced when abrupt change in RH occurs (e.g. RH change exceeding ±10% RH per hour), as explained in the Kunak Manual.


Evaluation results for PM₁₀ mass concentration

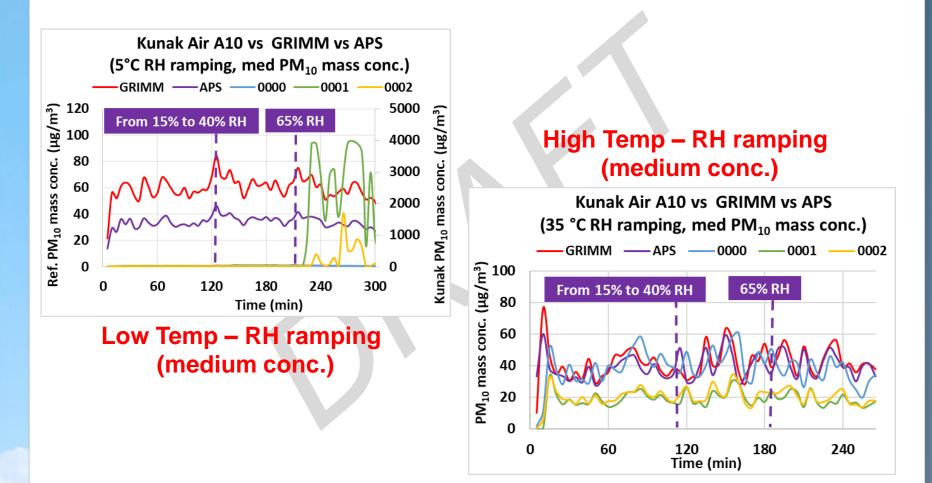

Kunak vs GRIMM vs APS

Kunak vs GRIMM vs APS (PM₁₀ mass conc.) Concentration Ramping at 20 °C and 40% RH

- The Kunak sensors tracked well with the concentration variation as recorded by the APS and GRIMM in the concentration range of 0 - ~200 µg/m³.
- The Kunak sensors showed very strong correlations with the corresponding GRIMM and APS PM₁₀ mass conc. (R² > 0.99).

Kunak vs GRIMM vs APS PM₁₀ Accuracy

Accuracy (20 °C and 40% RH)


Steady state #	Sensor Mean (µg/m³)	GRIMM (μg/m³)	Accuracy (%)	Steady state #	Sensor Mean (µg/m³)	APS (µg/m³)	Accuracy (%)
1	9.0	10.1	88.8	1	9.0	8.0	87.3
2	17.2	22.1	77.9	2	17.2	17.6	97.7
3	39.8	51.9	76.7	3	39.8	42.8	93.0
4	89.6	115.4	77.7	4	89.6	95.5	93.9
5	153.5	199.1	77.1	5	153.5	166.5	92.2

 The Kunak sensors underestimated GRIMM and APS PM₁₀ mass concentration at 20 °C and 40% RH. The accuracy of the Kunak sensors was fairly constant (77% to 88% for GRIMM and 87% to 98% for APS) over the PM₁₀ mass concentration range tested. The accuracy is higher when compared to APS than to GRIMM.

Kunak : Data Recovery and intra-model variability

- Data recovery for PM₁₀ mass concentration from all units was 100%
- High PM₁₀ measurement variations were observed between the Kunak sensors

Kunak PM₁₀: Climate Susceptibility

Discussion (PM₁₀)

- Accuracy: Overall, the accuracy of the of the Kunak sensors was fairly constant (77% to 88% for GRIMM and 87% to 98% for APS) over the entire range of PM₁₀ mass concentrations tested. The accuracy is higher when compared to APS than to GRIMM. The Kunak sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and APS in the laboratory experiments at 20 °C and 40% RH.
- Precision: Due to the nature of Arizona test dust, the aerosol concentration showed some variability, therefore, the precision cannot be fairly estimated.
- > Intra-model variability: High intra-model variability was observed among the Kunak sensors.
- \blacktriangleright Data Recovery: Data recovery for PM₁₀ mass concentration from all units was 100%.
- > **Coefficient of Determination**: The Kunak sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{10} and APS PM_{10} ($R^2 > 0.99$).
- Climate susceptibility: For most of the temperature and relative humidity combinations, the climate condition had minimal effect on the Kunak sensors. The Kunak sensors recorded out-of-range PM₁₀ mass concentrations at 5 °C/65% RH; this could be due to the RH transient effect produced when abrupt change in RH occurs (e.g. RH change exceeding ±10% RH per hour), as explained in the Kunak Manual.