Laboratory Evaluation Atmotube Pro

Background

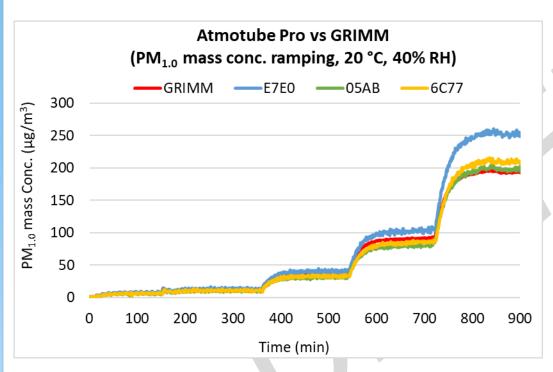
Three **Atmotube Pro** sensors (units IDs: E7E0, 05AB and 6C77) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (01/07/2020 to 03/11/2020) under ambient environmental conditions and have been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three Atmotube Pro units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

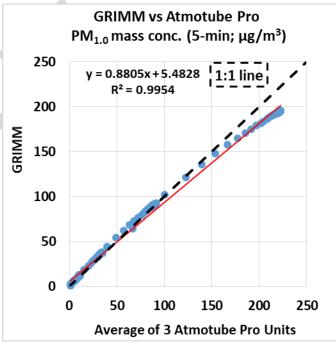
• Atmotube Pro (3 units tested):

- ➤ Particle sensor: optical; non-FEM (model SPS30, Sensirion)
- ➤ Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (μg/m³), temperature (°C), RH (%), pressure (mm Hg), VOC (ppm)
- ➤ Unit cost: \$189
- ➤ Time resolution: 1-min
- ➤ Units IDs: E7E0, 05AB, 6C77

GRIMM (reference method):

- ➤ Optical particle counter
- > FEM PM_{2.5}
- ➤ Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM₁ mass conc. from particle number measurements
- > Cost: ~\$25,000
- ➤ Time resolution: 1-min




Evaluation results for PM_{1.0} mass concentration

Atmotube Pro vs GRIMM

Atmotube Pro vs GRIMM (PM_{1.0} mass conc.)

Coefficient of Determination

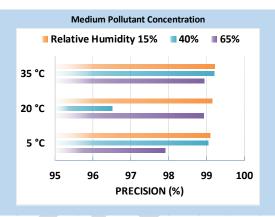
- The Atmotube Pro sensors tracked well with the PM_{1.0} concentration variation as recorded by the GRIMM in the concentration range of 0 ~200 μg/m³.
- The Atmotube Pro sensors showed very strong correlations with the GRIMM PM_{1.0} mass conc. (R² > 0.99.

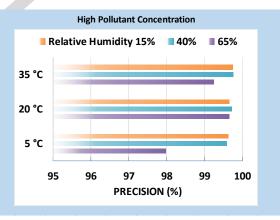
Atmotube Pro vs GRIMM PM_{1.0} Accuracy

Accuracy* (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	GRIMM (μg/m³)	Accuracy (%)
1	6.1	7.2	84.3
2	10.7	12.0	89.4
3	34.5	37.8	91.3
4	90.7	92.1	98.4
5	219.9	193.5	86.3

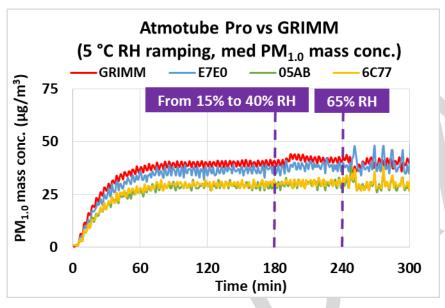
• Overall, the Atmotube Pro sensors overestimated GRIMM $PM_{1.0}$ measurements when $PM_{1.0}$ mass concentrations were > 100 μ g/m³. The accuracy of the Atmotube Pro sensors fairly constant (84% to 98%) over the range of $PM_{1.0}$ mass concentration tested.

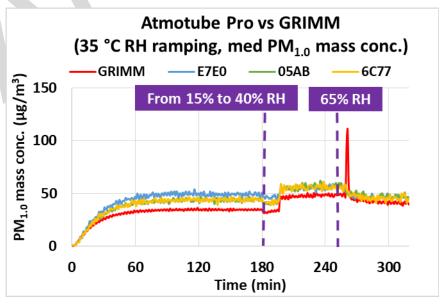

Atmotube Pro: Data Recovery and Intra-model Variability


- Data recovery for PM_{1.0} mass concentration from all units was 100%
- Moderate PM_{1.0} measurement variations were observed between the Atmotube Pro sensors

Atmotube Pro PM_{1.0}: Precision

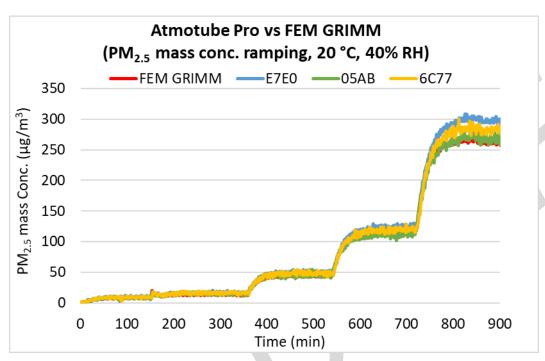
Precision (Effect of PM_{1.0} conc., Temperature and Relative Humidity)

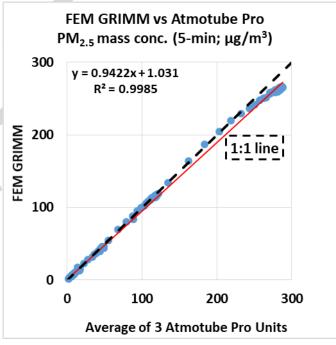



- Overall, the Atmotube Pro sensors showed high precision for all of the combinations of low, medium and high PM_{1.0} conc., T, and RH.
- Precision was relatively higher at higher PM_{1.0} mass concentrations.

Atmotube Pro PM_{1.0}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)


High Temp – RH ramping (medium conc.)


Evaluation results for PM_{2.5} mass concentration

Atmotube Pro vs FEM GRIMM

Atmotube Pro vs FEM GRIMM (PM_{2.5} mass conc.)

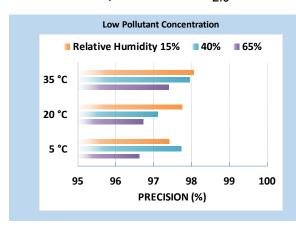
Coefficient of Determination

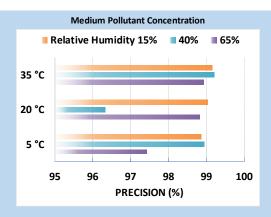
- The Atmotube Pro sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 - ~250 μg/m³.
- The Atmotube Pro sensors showed very strong correlations with the FEM GRIMM PM_{2.5} mass conc. (R² > 0.99)

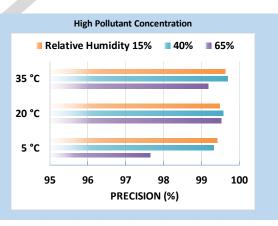
Atmotube Pro vs FEM GRIMM PM_{2.5} Accuracy

Accuracy* (20 °C and 40% RH)

Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	9.0	8.4	93.3
2	15.6	13.7	86.1
3	47.8	45.3	94.3
4	120.1	117.7	98.0
5	282.8	261.5	91.9

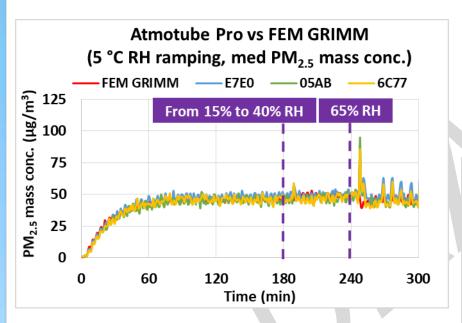

The Atmotube Pro sensors overestimated FEM GRIMM PM_{2.5} mass concentration at 20 °C and 40% RH. The accuracy of the Atmotube Pro sensors was fairly constant (86% to 98%) for the PM_{2.5} mass concentration range tested.

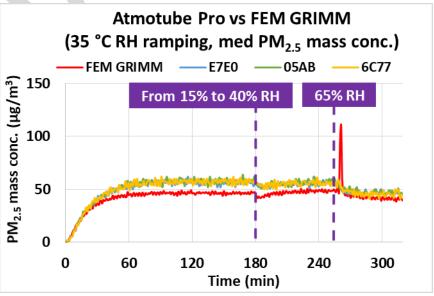

Atmotube Pro: Data Recovery and Intra-model Variability


- Data recovery for PM_{2.5} mass concentration from all units was 100%
- Low PM_{2.5} measurement variations were observed between the Atmotube Pro sensors

Atmotube Pro PM_{2.5}: Precision

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)




- Overall, the Atmotube Pro sensors showed high precision for all of the combinations of low, medium and high PM_{2.5} conc., T, and RH.
- Precision was relatively higher at higher PM_{2.5} mass concentrations.

Atmotube Pro PM_{2.5}: Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- Accuracy: Overall, the accuracy of the Atmotube Pro sensors fairly constant (84% to 98% and 86% to 98%) over the range of PM_{1.0} and PM_{2.5} mass concentration tested, respectively. Overall, the Atmotube Pro sensors overestimated GRIMM PM_{1.0} measurements when PM_{1.0} mass concentrations were > 100 μg/m³ and overestimated PM_{2.5} measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- ▶ Precision: The Atmotube Pro sensors showed high precision for all test combinations (PM concentrations, T and RH) for both PM_{1.0} and PM_{2.5} mass concentrations.
- ➤ Intra-model variability: moderate to low intra-model variability was observed among the Atmotube Pro sensors for PM_{1.0} and PM_{2.5} mass concentrations, respectively.
- ➤ Data Recovery: Data recovery for PM_{1.0} and PM_{2.5} mass concentration from all units was 100%.
- \triangleright Coefficient of Determination: The Atmotube Pro sensors showed very strong correlation/linear response with the corresponding GRIMM PM_{1.0} and FEM GRIMM PM_{2.5} measurement data (R² > 0.99).
- ➤ Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Atmotube Pro's precision. At the set-points of RH changes, the Atmotube Pro sensors reported spiked concentration changes for all PM levels at 5 °C and significant variation in concentrations for all PM levels at 5 °C/65% RH.