Laboratory Evaluation Alphasense OPC-R2

Outline

- 1. Background
- 2. PM_{2.5}
- 3. PM₁₀

Background

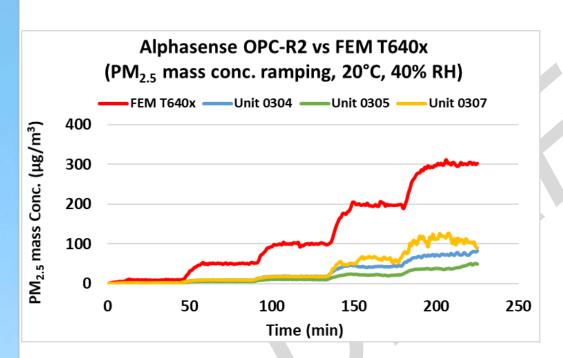
Three **Alphasense OPC-R2** sensors were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (10/16/2021 to 12/15/2021) under ambient environmental conditions. Following field-testing, the same three units were evaluated in the South Coast AQMD Sensor Environmental Testing Chamber 2 (SENTEC-2) under controlled artificial aerosol concentration/size range, temperature, and relative humidity.

Alphasense OPC-R2 (3 units tested):

- ➤ Particle sensor: optical; non-FEM (Alphasense OPC-R2)
- > Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (μg/m³), Temperature (°C), RH (%)
- ➤ Unit cost: ~\$435, including data acquisition interface with software
- ➤ Time resolution: 30-sec
- ➤ Units IDs: 0304, 0305, 0307

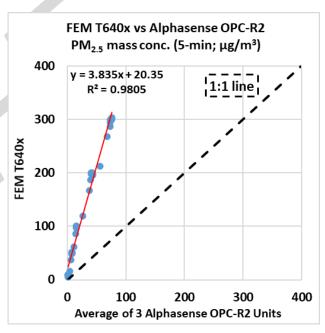
Reference instruments:

- ➤ PM_{2.5} instrument (Teledyne T640x, San Diego, CA; hereinafter FEM T640x); cost: ~\$37,000
 - ➤ Time resolution: 1-min
- ➤ PM₁₀ instrument (non-FEM, APS, TSI, Shoreview, MN); cost: ~\$55,000
 - > Time resolution: 1-min



APS

$PM_{2.5}$


- 1. FEM T640x vs Alphasense OPC-R2
- Accuracy, data recovery, and intra-model variability
- 3. Precision
- 4. Climate susceptibility
- 5. Discussion

Alphasense OPC-R2 vs FEM T640x (PM_{2.5})

 The Alphasense OPC-R2 sensors tracked well with the concentration variation but underestimated PM_{2.5}, compared to the FEM T640x in the concentration range of 0 - 300 μg/m³.

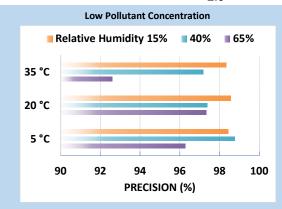
Coefficient of Determination

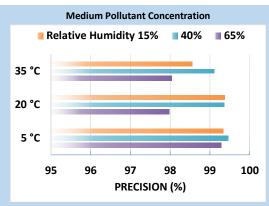
 The Alphasense OPC-R2 sensors showed very strong correlations with the FEM T640x PM_{2.5} mass conc. (R² ~ 0.98)

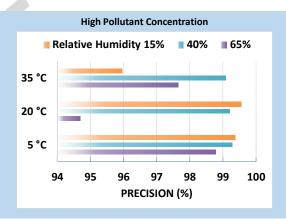
Alphasense OPC-R2 vs FEM T640x PM_{2.5} Accuracy

Accuracy (20 °C and 40% RH)

Steady State #	Sensor Mean (μg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	1.4	9.1	15.1
2	7.8	50.4	15.5
3	15.6	99.3	15.7
4	42.5	197.5	21.5
5	75.2	301.6	24.9

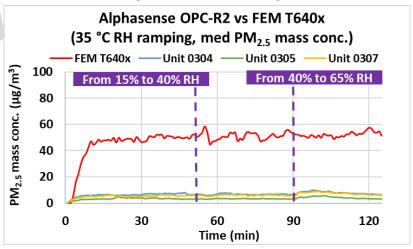

 The Alphasense OPC-R2 sensors underestimated PM_{2.5} concentration values compared to the FEM T640x PM_{2.5} mass concentration at 20 °C and 40% RH. The Alphasense OPC-R2 sensors showed fairly constant accuracy (15.1% to 24.9%) for all tested PM_{2.5} concentrations compared to the reference FEM T640x for the entirety of test.


Alphasense OPC-R2 Data Recovery and Intra-model Variability


- Data recovery for PM_{2.5} measurements was 100% for all three units
- High PM_{2.5} concentration variations were observed between the three units at 20° C and 40% RH, at low, medium and high PM_{2.5} as measured by the FEM T640x.

Precision: Alphasense OPC-R2

Precision (Effect of PM_{2.5} conc., Temperature and Relative Humidity)


 Overall, Alphasense OPC-R2 sensors showed high precision for all the combinations of PM_{2.5} conc., T, and RH.

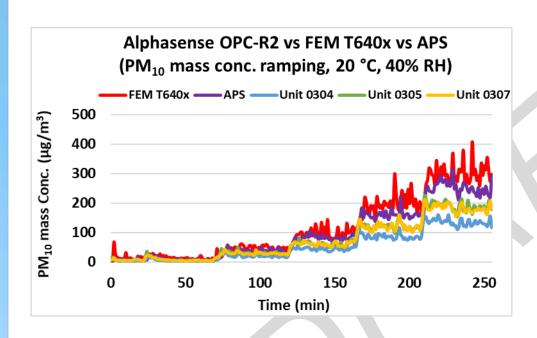
Climate Susceptibility: Alphasense OPC-R2

Low Temp - RH ramping (medium conc.)

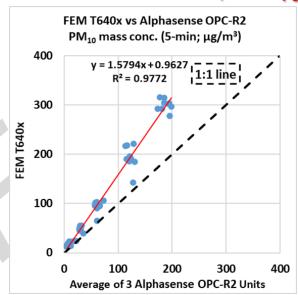
High Temp – RH ramping (medium conc.)

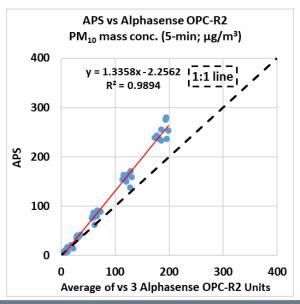
Discussion: PM_{2.5}

- Accuracy: The three Alphasense OPC-R2 sensors showed accuracy ranged from 15.1% to 24.9%.
- ▶ Precision: The three Alphasense OPC-R2 sensors exhibited high precision during all tested PM_{2.5} conc., T, and RH conditions.
- ➤ Intra-model variability: High PM_{2.5} measurement variations were observed among the three Alphasense OPC-R2 sensors at 20 °C and 40% RH.
- ➤ Data Recovery: Data recovery for PM_{2.5} measurements was 100% for all three units.
- ➤ Bias: N/A
- > **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- Response time: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- \triangleright Linear Correlation: The three Alphasense OPC-R2 sensors showed very strong correlation/linear response with the corresponding FEM T640x PM_{2.5} measurement data (R² ~ 0.98).
- > Selectivity: N/A for PM sensors test
- > Interferences: N/A for PM sensors test
- ➤ **Note about PM**_{1.0}: The field evaluation compared the PM_{1.0} values reported from the Alphasense OPC-R2 sensors against the field GRIMM and T640 that reported PM_{1.0}. However, PM_{1.0} was not compared in this lab evaluation because at the time of lab testing (before March 2022) the lab T640x firmware upgrade to report PM_{1.0} was not finalized yet.


Discussion: PM_{2.5}

- Measurement duration: The Alphasense OPC-R2 sensors underestimated PM_{2.5} concentration values compared to the FEM T640x PM_{2.5} mass concentration at 20 °C and 40% RH. The Alphasense OPC-R2 sensors showed fairly constant accuracy (15.1% to 24.9%) for all tested PM_{2.5} concentrations compared to the reference FEM T640x for the entirety of test.
- ➤ **Measurement frequency:** Alphasense OPC-R2 sensors report 30-sec averaged values. The obtained data was used as-is for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), but condensed into 1-minute to 5-minute averages for linear correlation studies against the FEM T640x.
- ➤ Sensor contamination and expiration: Prior to the laboratory evaluation, the Alphasense OPC-R2 sensors were tested in the field for two months. The PM_{2.5} laboratory studies lasted for about 9 days with intermittent non-operating periods and a storage period of ~ 2 months. For PM_{2.5} measurements, all of the Alphasense OPC-R2 sensors maintained their functionalities and operated normally throughout the duration of the testing.
- **Concentration range**: Up to 1000 μg/m³ as suggested by the manufacturer. During the laboratory evaluation, the Alphasense OPC-R2 sensors were challenged with PM_{2.5} concentrations up to 300 μg/m³.
- > Drift: N/A
- Climate susceptibility: During the lab studies, climate did not significantly impact precision. Increasing RH led to less underestimation compared to the FEM T640x.
- ➤ **Response to loss of power**: Alphasense OPC-R2 sensors were powered through the entirety of the lab tests.


PM_{10}


- 1. FEM T640x vs APS vs Alphasense OPC-R2
- 2. Accuracy, data recovery, and intra-model variability
- 3. Climate susceptibility
- 4. Discussion

Alphasense OPC-R2 vs FEM T640x vs APS (PM₁₀)

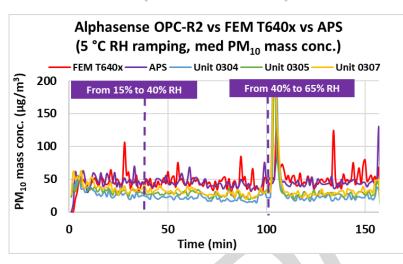
- The Alphasense OPC-R2 sensors tracked well with the PM₁₀ concentration variations as recorded by the FEM T640x and APS in the concentration range of 0 300 μg/m³.
- The Alphasense OPC-R2 sensors showed very strong correlations with both FEM T640x and APS PM₁₀ measurement data (R² > 0.97).

Alphasense OPC-R2 vs FEM T640x vs APS PM₁₀ Accuracy

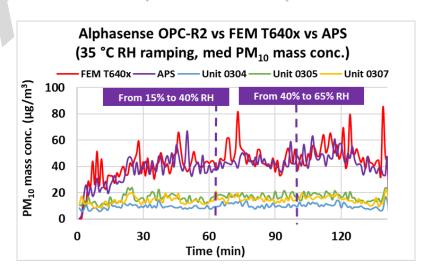
Accuracy (20 °C and 40% RH)

Steady State #	Sensor Mean (μg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	4.5	12.3	36.8
2	26.1	48.3	54.0
3	56.3	98.3	57.3
4	108.4	211.5	51.3
5	165.9	306.7	54.1

Steady State #	Sensor Mean (μg/m³)	APS (μg/m³)	Accuracy (%)
1	4.5	6.8	66.3
2	26.1	38.5	67.6
3	56.3	80.6	69.8
4	108.4	163.6	66.3
5	165.9	241.9	68.6


The Alphasense OPC-R2 sensors underestimated PM₁₀ concentration values compared to the FEM T640x and APS PM₁₀ mass concentration at 20 °C and 40% RH. The Alphasense OPC-R2 sensors showed fairly constant accuracy (36.8% to 54.1% for the FEM T640x and 66.3% to 69.8% for the APS) for all tested PM₁₀ concentrations compared to the reference FEM T640x for the entirety of test.

Alphasense OPC-R2 Data Recovery and Intra-model Variability


- Data recovery for PM₁₀ measurements was 100% for all three units
- Moderate PM_{10} concentration variations were observed between the three units at 20° C and 40% RH, at low, medium, and high μ g/m³ $PM_{2.5}$ as measured by the FEM T640x.

Climate Susceptibility: Alphasense OPC-R2

Low Temp - RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion: PM₁₀

- ➤ Accuracy: The Alphasense OPC-R2 sensors underestimated PM₁₀ concentration values compared to the FEM T640x and APS PM₁₀ mass concentration at 20 °C and 40% RH. The Alphasense OPC-R2 sensors showed fairly constant accuracy (36.8% to 54.1% for the FEM T640x and 66.3% to 69.8% for the APS) for all tested PM₁₀ concentrations compared to the reference FEM T640x for the entirety of test.
- ➤ **Precision**: Due to the nature of Arizona Test Dust dispersion, the aerosol concentration showed some variability, therefore, the precision cannot be fairly estimated.
- ➤ Intra-model variability: Moderate PM₁₀ measurement variations were observed among the three Alphasense OPC-R2 sensors at 20 °C and 40% RH.
- ➤ Data Recovery: Data recovery for PM₁₀ measurements was 100% for all three units.
- Bias: N/A
- **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- **Response time**: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- ➤ **Linear Correlation**: The Alphasense OPC-R2 sensors showed very strong correlation/linear response with the corresponding FEM T640x and APS PM₁₀measurement data ($R^2 > 0.97$).
- > Selectivity: N/A for PM sensors test
- Interferences: N/A for PM sensors test
- ➤ **Note about PM**_{1.0}: The field evaluation compared the PM_{1.0} values reported from the Alphasense OPC-R2 sensors against the field GRIMM and T640 that reported PM_{1.0}. However, PM_{1.0} was not compared in this lab evaluation because at the time of lab testing (before March 2022) the lab T640x firmware upgrade to report PM_{1.0} was not finalized yet.

Discussion: PM₁₀

- ➤ **Measurement duration**: Alphasense OPC-R2 sensors report 30-sec averaged values.
- ➤ **Measurement frequency:** Alphasense OPC-R2 sensors report 30-sec averaged values. The obtained data was condensed into 1-minute for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), and to 5-minute averages for linear correlation studies against the FEM T640x and APS.
- ➤ Sensor contamination and expiration: Prior to the laboratory evaluation, the Alphasense OPC-R2 sensors were tested in the field for two months. The PM₁₀ laboratory studies lasted for about 9 days with intermittent non-operating periods and a storage period of ~ 2 months. For PM₁₀ measurements, all of the Alphasense OPC-R2 sensors maintained their functionalities and operated normally throughout the duration of the testing.
- **Concentration range**: Up to 1000 μg/m³ as suggested by the manufacturer. During the laboratory evaluation, the Alphasense OPC-R2 sensors were challenged with PM₁₀ concentrations up to 300 μg/m³.
- > Drift: N/A
- Climate susceptibility: During the lab studies, climate did not significantly impact precision.
- Response to loss of power: Alphasense OPC-R2 sensors were powered through the entirety of the lab tests.