Laboratory Evaluation

Alphasense OPC-N3 Sensor

Background

Three Alphasense OPC-N3 sensors (units IDs: 0217, 0218 and 0219) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (08/15/2018 to 10/11/2018) under ambient environmental conditions and have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three Alphasense OPC-N3 units were tested both in the field ($1^{\text {st }}$ stage of testing) and in the laboratory ($2^{\text {nd }}$ stage of testing).

- Alphasense OPC-N3 (3 units tested):
$>$ Particle sensor (optical; non-FEM)
$>$ Each unit measures: $\mathrm{PM}_{1.0}, \mathrm{PM}_{2.5}$ and $\mathrm{PM}_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$ Temperature (${ }^{\circ} \mathrm{C}$), Relative Humidity (\%)
> Unit cost: ~\$340
$>$ Time resolution: 10-sec
$>$ Units IDs: 0217, 0218, 0219
$>$ Differences from OPC-N2:
- Increased particle size range: 0.38-40 $\mu \mathrm{m}$ and channels: 24 software bins
- Equipped with onboard temperature and humidity sensor that is enclosed in raw sensor housing
- Auto switching when detecting higher range
- Increased sampling flow rate to $5.5 \mathrm{~L} / \mathrm{min}$

GRIMM (reference method):

$>$ Optical particle counter
$>\mathrm{FEM} \mathrm{PM}_{2.5}$
> Uses proprietary algorithms to calculate PM_{10}, $\mathrm{PM}_{2.5}$, and $\mathrm{PM}_{1.0}$ mass conc. from particle number measurements
> Cost: ~\$25,000
$>$ Time resolution: 1-min
TSI APS 3321 (reference method for $P M_{10}$ mass):
> Aerodynamic particle sizer
$>$ Measures particles from 0.5 to $20 \mu \mathrm{~m}$
> Uses a patented, double-crest optical system for unmatched sizing accuracy
> Cost: ~\$50,000

Evaluation results guideline

- Alphasense OPC-N3 vs GRIMM PM $_{1.0}$ mass concentration
- Alphasense OPC-N3 vs FEM GRIMM PM 2.5 mass concentration
- Alphasense OPC-N3 vs GRIMM vs APS PM P $_{10}$ mass concentration

Alphasense OPC-N3

TSI APS 3321

Evaluation results for PM 1.0 mass concentration

Alphasense OPC-N3 vs GRIMM

Alphasense OPC-N3 vs GRIMM (PM 1.0 mass conc.)

Coefficient of Determination

Alphasense OPC-N3 vs GRIMM (PM ${ }_{1.0}$ mass conc.
ramping, $20^{\circ} \mathrm{C}, \mathbf{4 0 \%} \mathrm{RH}$)

- The Alphasense OPC-N3 sensors tracked well with the $\mathrm{PM}_{1.0}$ concentration variations as recorded by GRIMM in the concentration range of $0-\sim 200 \mu \mathrm{~g} / \mathrm{m}^{3}$.

GRIMM vs Alphasense OPC-N3
PM ${ }_{1.0}$ mass conc. ($5-\mathrm{min} ; \mu \mathrm{g} / \mathrm{m}^{3}$)

- The Alphasense OPC-N3 sensors showed very strong correlations with the corresponding GRIMM $\mathrm{PM}_{1.0}$ mass conc. $\left(R^{2}>0.99\right)$

Alphasense OPC-N3 vs GRIMM PM 1.0 Accuracy

- Accuracy ($20^{\circ} \mathrm{C}$ and $40 \% \mathrm{RH}$)

Steady state $\#$	Sensor Mean $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	GRIMM $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Accuracy $(\%)$
1	1.2	9.5	12.2
2	2.0	14.2	14.0
3	6.2	51.9	12.0
4	14.2	123.4	11.5
5	22.8	211.8	10.7

- The Alphasense OPC-N3 sensors underestimated GRIMM PM $1_{1.0}$ mass concentration. The accuracy of the Alphasense OPC-N3 sensors was constant (11% to 14%) over the range of $\mathrm{PM}_{1.0}$ mass concentrations tested.

Alphasense OPC-N3: Data Recovery and intra-model variability

- Data recovery for $\mathrm{PM}_{1.0}$ mass concentration from all units was 100%
- High $\mathrm{PM}_{1.0}$ measurement variations were observed between the Alphasense OPC-N3 sensors

PM 1.0 Precision: Alphasense OPC-N3

- Precision (Effect of PM $_{1.0}$ conc., Temperature and Relative Humidity)

- Overall, the Alphasense OPC-N3 sensors showed high precision for all of the combinations of low, medium and high $\mathrm{PM}_{1.0}$ conc., T and RH .

Alphasense OPC-N3 PM 1.0: Climate Susceptibility

Evaluation results for $\mathrm{PM}_{2.5}$ mass concentration

Alphasense OPC-N3 vs FEM GRIMM

Alphasense OPC-N3 vs FEM GRIMM (PM 2.5 mass conc.)

Coefficient of Determination

- The Alphasense OPC-N3 sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of $0-\sim 300 \mu \mathrm{~g} / \mathrm{m}^{3}$.

FEM GRIMM vs Alphasense OPC-N3 $\mathrm{PM}_{2.5}$ mass conc. (5-min; $\mu \mathrm{g} / \mathrm{m}^{3}$)

Average of 3 Alphasense OPC-N3 Units

- The Alphasense OPC-N3 sensors showed very strong correlations with the corresponding FEM GRIMM PM $_{2.5}$ mass conc. ($\mathrm{R}^{2}>0.99$).

Alphasense OPC-N3 vs FEM GRIMM PM 2.5 Accuracy

- Accuracy ($20^{\circ} \mathrm{C}$ and $40 \% \mathrm{RH}$)

Steady state $\#$	Sensor Mean $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	FEM GRIMM $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Accuracy $(\%)$
1	1.7	10.2	16.6
2	2.9	15.2	18.9
3	11.4	59.6	19.1
4	33.3	153.1	21.7
5	65.3	270.1	24.2

- The Alphasense OPC-N3 sensors underestimated FEM GRIMM PM ${ }_{2.5}$ mass concentration at $20^{\circ} \mathrm{C}$ and $40 \% \mathrm{RH}$. The accuracy of the Alphasense OPC-N3 sensors increased slightly as $\mathrm{PM}_{2.5}$ mass conc. increased.

Alphasense OPC-N3: Data Recovery and intra-model variability

- Data recovery for $\mathrm{PM}_{2.5}$ mass concentration from all units was 100%
- High $\mathrm{PM}_{2.5}$ measurement variations were observed between the Alphasense OPC-N3 sensors

$\mathrm{PM}_{2.5}$ Precision: Alphasense OPC N-3

- Precision (Effect of $\mathrm{PM}_{2.5}$ conc., Temperature and Relative Humidity)

- Overall, the Alphasense OPC-N3 sensors showed high precision for all of the combinations of low, medium and high $\mathrm{PM}_{2.5}$ conc., T and RH .

Alphasense OPC-N3 PM 2.5 : Climate Susceptibility

Low Temp - RH ramping (medium conc.)

High Temp - RH ramping (medium conc.)

Discussion $\left(\mathrm{PM}_{1.0}\right.$ and $\left.\mathrm{PM}_{2.5}\right)$

$>$ Accuracy: Overall, the accuracy of the Alphasense OPC-N3 sensors was constant (11\% to 14\%) over the range of $\mathrm{PM}_{1.0}$ mass concentrations tested. The accuracy of the Alphasense OPC-N3 sensors increased slightly as $\mathrm{PM}_{2.5}$ mass conc. increased. The Alphasense OPC-N3 sensors largely underestimated both $\mathrm{PM}_{1.0}$ and $\mathrm{PM}_{2.5}$ measurements from GRIMM in the laboratory experiments at $20^{\circ} \mathrm{C}$ and $40 \% \mathrm{RH}$.
> Precision: The Alphasense OPC-N3 sensors showed high precision for all test combinations (PM concentrations, T and RH) for both $\mathrm{PM}_{1.0}$ and $\mathrm{PM}_{2.5}$ mass concentrations
> Intra-model variability: High intra-model variability was observed among the Alphasense OPC-N3 sensors.
> Data Recovery: Data recovery for $\mathrm{PM}_{1.0}$ and $\mathrm{PM}_{2.5}$ mass concentration from all units was 100%.
> Coefficient of Determination: The Alphasense OPC-N3 sensors showed very strong correlation/linear response with the corresponding GRIMM PM $_{1.0}$ and FEM GRIMM PM $_{2.5}$ measurement data ($\mathrm{R}^{2}>0.99$).
> Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Alphasense OPC-N3 sensors except that the sensors showed significant variations in PM conc. at $65 \% \mathrm{RH}$ at $5^{\circ} \mathrm{C}$.

Evaluation results for PM_{10} mass concentration

Alphasense OPC-N3 vs GRIMM vs APS

Alphasense OPC-N3 vs GRIMM vs APS (PM 10 mass conc.

Coefficient of Determination

- The Alphasense OPC-N3 sensors tracked well with the concentration variation as recorded by GRIMM and APS in the concentration range of $0-\sim 200 \mu \mathrm{~g} / \mathrm{m}^{3}$.
- The Alphasense OPC-N3 sensors showed very strong correlations with the corresponding GRIMM and APS PM_{10} mass conc. ($\mathrm{R}^{2}>0.99$).

GRIMM vs OPC-N3 PM ${ }_{10}$ mass conc.
($5-\mathrm{min} ; \mu \mathrm{g} / \mathrm{m}^{3}$)

Average of 3 Alphasense OPC-N3 Units

Alphasense OPC-N3 vs GRIMM vs APS PM 10 Accuracy

- Accuracy ($20^{\circ} \mathrm{C}$ and $40 \% \mathrm{RH}$)

Steady state $\#$	Sensor Mean $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	GRIMM $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Accuracy $(\%)$	Steady state $\#$	Sensor Mean $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	APS $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Accuracy $(\%)$
1	0.4	10.1	4.1	1	0.4	7.5	5.5
2	0.9	21.8	4.0	2	0.9	17.5	5.0
3	2.0	51.5	4.0	3	2.0	42.5	4.8
4	4.9	116.9	4.2	4	4.9	96.4	5.1
5	9.0	198.5	4.5	5	9.0	166.7	5.4

- The Alphasense OPC-N3 sensors underestimated GRIMM and APS PM 10 mass concentration at 20 ${ }^{\circ} \mathrm{C}$ and 40% RH. The accuracy of the Alphasense OPC-N3 sensors was fairly constant ($\sim 4 \%$ to 5%) over the PM_{10} mass concentration range tested.

Alphasense OPC-N3: Data Recovery and intra-model variability

- Data recovery for PM_{10} mass concentration from all units was 100%
- High PM_{10} measurement variations were observed between the Alphasense OPC-N3 sensors

Alphasense OPC-N3 PM 10 : Climate Susceptibility

Low Temp - RH ramping (medium conc.)

High Temp - RH ramping (medium conc.)

Alphasense OPC-N3 vs GRIMM vs APS ($35^{\circ} \mathrm{C}$ RH ramping, med $\mathrm{PM} \mathrm{M}_{10}$ mass conc.)

Discussion $\left(\mathrm{PM}_{10}\right)$

> Accuracy: The Alphasense OPC-N3 sensors underestimated the corresponding GRIMM and APS PM 10 mass concentration at $20^{\circ} \mathrm{C}$ and $40 \% \mathrm{RH}$. The accuracy of the Alphasense OPC-N3 sensors was constant ($\sim 4 \%$ to 5%) over the PM_{10} mass concentration range tested.
> Precision: Due to the nature of Arizona test dust, the aerosol concentration showed some variability, therefore, the precision cannot be fairly estimated.
> Intra-model variability: High intra-model variability was observed among the Alphasense OPC-N3 sensors.
> Data Recovery: Data recovery for PM_{10} mass concentration from all units was 100%.
> Coefficient of Determination: The Alphasense OPC-N3 sensors showed very strong correlation/linear response with the corresponding GRIMM and APS PM ${ }_{10}$ measurement data ($\mathrm{R}^{2}>0.99$).
> Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Alphasense OPC-N3 sensors except that the sensors showed significant variations in PM_{10} conc. At $65 \% \mathrm{RH}$ at $5^{\circ} \mathrm{C}$.

