# Laboratory Evaluation Alphasense OPC-N3 Sensor



# Background

Three **Alphasense OPC-N3** sensors (units IDs: 0217, 0218 and 0219) were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (08/15/2018 to 10/11/2018) under ambient environmental conditions and have now been evaluated in the South Coast AQMD Chemistry Laboratory under controlled artificial aerosol concentration/size range, temperature, and relative humidity. The same three Alphasense OPC-N3 units were tested both in the field (1<sup>st</sup> stage of testing) and in the laboratory (2<sup>nd</sup> stage of testing).

- Alphasense OPC-N3 (3 units tested):
  - Particle sensor (optical; non-FEM)
  - Each unit measures: PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> (µg/m<sup>3</sup>) Temperature (°C), Relative Humidity (%)
  - ≻ Unit cost: ~\$340
  - ≻ Time resolution: 10-sec
  - > Units IDs: 0217, 0218, 0219
  - ➢ Differences from OPC-N2:
    - Increased particle size range: 0.38 40 µm and channels: 24 software bins
    - Equipped with onboard temperature and humidity sensor that is enclosed in raw sensor housing
    - Auto switching when detecting higher range
    - Increased sampling flow rate to 5.5 L/min

#### GRIMM (reference method):

- > Optical particle counter
- ► FEM PM<sub>2.5</sub>
- Uses proprietary algorithms to calculate PM<sub>10</sub>, PM<sub>2.5</sub>, and PM<sub>1.0</sub> mass conc. from particle number measurements
- ≻ Cost: ~\$25,000
- Time resolution: 1-min

#### TSI APS 3321 (reference method for PM<sub>10</sub> mass):

- ➤ Aerodynamic particle sizer
- $\blacktriangleright$  Measures particles from 0.5 to 20  $\mu$ m
- Uses a patented, double-crest optical system for unmatched sizing accuracy
- ≻ Cost: ~\$50,000

## **Evaluation results guideline**

- Alphasense OPC-N3 vs GRIMM PM<sub>1.0</sub> mass concentration
- Alphasense OPC-N3 vs FEM GRIMM PM<sub>2.5</sub> mass concentration
- Alphasense OPC-N3 vs GRIMM vs APS PM<sub>10</sub> mass concentration



Alphasense OPC-N3





**TSI APS 3321** 

Evaluation results for PM<sub>1.0</sub> mass concentration

Alphasense OPC-N3 vs GRIMM

### Alphasense OPC-N3 vs GRIMM (PM<sub>1.0</sub> mass conc.)



The Alphasense OPC-N3 sensors tracked well with the PM<sub>1.0</sub> concentration variations as recorded by GRIMM in the concentration range of 0 - ~200 µg/m<sup>3</sup>.

Coefficient of Determination

GRIMM vs Alphasense OPC-N3 PM<sub>1.0</sub> mass conc. (5-min; µg/m<sup>3</sup>)



• The Alphasense OPC-N3 sensors showed very strong correlations with the corresponding GRIMM  $PM_{1.0}$  mass conc. ( $R^2 > 0.99$ )

### Alphasense OPC-N3 vs GRIMM PM<sub>1.0</sub> Accuracy

Accuracy (20 °C and 40% RH)

| Steady state<br># | Sensor Mean<br>(µg/m <sup>3</sup> ) | GRIMM<br>(µg/m³) | Accuracy<br>(%) |  |
|-------------------|-------------------------------------|------------------|-----------------|--|
| 1                 | 1.2                                 | 9.5              | 12.2            |  |
| 2                 | 2.0                                 | 14.2             | 14.0            |  |
| 3                 | 6.2                                 | 51.9             | 12.0            |  |
| 4                 | 14.2                                | 123.4            | 11.5            |  |
| 5                 | 22.8                                | 211.8            | 10.7            |  |

 The Alphasense OPC-N3 sensors underestimated GRIMM PM<sub>1.0</sub> mass concentration. The accuracy of the Alphasense OPC-N3 sensors was constant (11% to 14%) over the range of PM<sub>1.0</sub> mass concentrations tested.

#### Alphasense OPC-N3: Data Recovery and intra-model variability

- Data recovery for  $PM_{1.0}$  mass concentration from all units was 100%
- High PM<sub>1.0</sub> measurement variations were observed between the Alphasense OPC-N3 sensors

### PM<sub>1.0</sub> Precision: Alphasense OPC-N3

• Precision (Effect of PM<sub>1.0</sub> conc., Temperature and Relative Humidity)



 Overall, the Alphasense OPC-N3 sensors showed high precision for all of the combinations of low, medium and high PM<sub>1.0</sub> conc., T and RH.

#### Alphasense OPC-N3 PM<sub>1.0</sub>: Climate Susceptibility



# Evaluation results for PM<sub>2.5</sub> mass concentration

Alphasense OPC-N3 vs FEM GRIMM

### Alphasense OPC-N3 vs FEM GRIMM (PM<sub>2.5</sub> mass conc.)



• The Alphasense OPC-N3 sensors tracked well with the concentration variation as recorded by the FEM GRIMM in the concentration range of 0 -  $\sim$ 300 µg/m<sup>3</sup>.

Coefficient of Determination



 The Alphasense OPC-N3 sensors showed very strong correlations with the corresponding FEM GRIMM PM<sub>2.5</sub> mass conc. (R<sup>2</sup> > 0.99).

### Alphasense OPC-N3 vs FEM GRIMM PM<sub>2.5</sub> Accuracy

Accuracy (20 °C and 40% RH)

| Steady state<br># | Sensor Mean<br>(µg/m <sup>3</sup> ) | FEM GRIMM<br>(µg/m³) | Accuracy<br>(%) |  |
|-------------------|-------------------------------------|----------------------|-----------------|--|
| 1                 | 1.7                                 | 10.2                 | 16.6            |  |
| 2                 | 2.9                                 | 15.2                 | 18.9            |  |
| 3                 | 11.4                                | 59.6                 | 19.1            |  |
| 4                 | 33.3                                | 153.1                | 21.7            |  |
| 5                 | 65.3                                | 270.1                | 24.2            |  |

 The Alphasense OPC-N3 sensors underestimated FEM GRIMM PM<sub>2.5</sub> mass concentration at 20 °C and 40% RH. The accuracy of the Alphasense OPC-N3 sensors increased slightly as PM<sub>2.5</sub> mass conc. increased.

#### Alphasense OPC-N3: Data Recovery and intra-model variability

- Data recovery for  $PM_{2.5}$  mass concentration from all units was 100%
- High PM<sub>2.5</sub> measurement variations were observed between the Alphasense OPC-N3 sensors

### PM<sub>2.5</sub> Precision: Alphasense OPC N-3

• Precision (Effect of PM<sub>2.5</sub> conc., Temperature and Relative Humidity)



 Overall, the Alphasense OPC-N3 sensors showed high precision for all of the combinations of low, medium and high PM<sub>2.5</sub> conc., T and RH.

#### Alphasense OPC-N3 PM<sub>2.5</sub>: Climate Susceptibility



# Discussion (PM<sub>1.0</sub> and PM<sub>2.5</sub>)

- Accuracy: Overall, the accuracy of the Alphasense OPC-N3 sensors was constant (11% to 14%) over the range of PM<sub>1.0</sub> mass concentrations tested. The accuracy of the Alphasense OPC-N3 sensors increased slightly as PM<sub>2.5</sub> mass conc. increased. The Alphasense OPC-N3 sensors largely underestimated both PM<sub>1.0</sub> and PM<sub>2.5</sub> measurements from GRIMM in the laboratory experiments at 20 °C and 40% RH.
- Precision: The Alphasense OPC-N3 sensors showed high precision for all test combinations (PM concentrations, T and RH) for both PM<sub>1.0</sub> and PM<sub>2.5</sub> mass concentrations
- Intra-model variability: High intra-model variability was observed among the Alphasense OPC-N3 sensors.
- > **Data Recovery:** Data recovery for  $PM_{1.0}$  and  $PM_{2.5}$  mass concentration from all units was 100%.
- **Coefficient of Determination**: The Alphasense OPC-N3 sensors showed very strong correlation/linear response with the corresponding GRIMM  $PM_{1.0}$  and FEM GRIMM  $PM_{2.5}$  measurement data (R<sup>2</sup> > 0.99).
- Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Alphasense OPC-N3 sensors except that the sensors showed significant variations in PM conc. at 65% RH at 5°C.

# Evaluation results for PM<sub>10</sub> mass concentration

Alphasense OPC-N3 vs GRIMM vs APS

### Alphasense OPC-N3 vs GRIMM vs APS (PM<sub>10</sub> mass conc.)



Coefficient of Determination

- The Alphasense OPC-N3 sensors tracked well with the concentration variation as recorded by GRIMM and APS in the concentration range of 0 - ~200 µg/m<sup>3</sup>.
- The Alphasense OPC-N3 sensors showed very strong correlations with the corresponding GRIMM and APS PM<sub>10</sub> mass conc. (R<sup>2</sup> > 0.99).



## Alphasense OPC-N3 vs GRIMM vs APS PM<sub>10</sub> Accuracy

• Accuracy (20 °C and 40% RH)

| Steady state<br># | Sensor Mean<br>(µg/m³) | GRIMM<br>(µg/m³) | Accuracy<br>(%) | Steady state<br># | Sensor Mean<br>(µg/m³) | APS<br>(µg/m³) | Accuracy<br>(%) |
|-------------------|------------------------|------------------|-----------------|-------------------|------------------------|----------------|-----------------|
| 1                 | 0.4                    | 10.1             | 4.1             | 1                 | 0.4                    | 7.5            | 5.5             |
| 2                 | 0.9                    | 21.8             | 4.0             | 2                 | 0.9                    | 17.5           | 5.0             |
| 3                 | 2.0                    | 51.5             | 4.0             | 3                 | 2.0                    | 42.5           | 4.8             |
| 4                 | 4.9                    | 116.9            | 4.2             | 4                 | 4.9                    | 96.4           | 5.1             |
| 5                 | 9.0                    | 198.5            | 4.5             | 5                 | 9.0                    | 166.7          | 5.4             |

The Alphasense OPC-N3 sensors underestimated GRIMM and APS PM<sub>10</sub> mass concentration at 20 °C and 40% RH. The accuracy of the Alphasense OPC-N3 sensors was fairly constant (~4% to 5%) over the PM<sub>10</sub> mass concentration range tested.

#### Alphasense OPC-N3: Data Recovery and intra-model variability

- Data recovery for  $PM_{10}$  mass concentration from all units was 100%
- High PM<sub>10</sub> measurement variations were observed between the Alphasense OPC-N3 sensors

#### Alphasense OPC-N3 PM<sub>10</sub>: Climate Susceptibility



# Discussion (PM<sub>10</sub>)

- Accuracy: The Alphasense OPC-N3 sensors underestimated the corresponding GRIMM and APS PM<sub>10</sub> mass concentration at 20 °C and 40% RH. The accuracy of the Alphasense OPC-N3 sensors was constant (~4% to 5%) over the PM<sub>10</sub> mass concentration range tested.
- Precision: Due to the nature of Arizona test dust, the aerosol concentration showed some variability, therefore, the precision cannot be fairly estimated.
- Intra-model variability: High intra-model variability was observed among the Alphasense OPC-N3 sensors.
- > **Data Recovery:** Data recovery for  $PM_{10}$  mass concentration from all units was 100%.
- Coefficient of Determination: The Alphasense OPC-N3 sensors showed very strong correlation/linear response with the corresponding GRIMM and APS PM<sub>10</sub> measurement data (R<sup>2</sup> > 0.99).
- Climate susceptibility: For most of the temperature and relative humidity combination, the climate condition had minimal effect on the Alphasense OPC-N3 sensors except that the sensors showed significant variations in PM<sub>10</sub> conc. At 65% RH at 5°C.