Laboratory Evaluation Wicked Device – Air Quality Egg 2022 Model

Three Wicked Device – Air Quality Egg 2022 Model (hereinafter Air Quality Egg 2022 Model) sensors were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (11/20/2021 to 1/19/2022) under ambient environmental conditions. Following field-testing, the same three units were evaluated in the South Coast AQMD Sensor Environmental Testing Chamber 2 (SENTEC-2) under controlled artificial aerosol concentration/size range, temperature, and relative humidity.

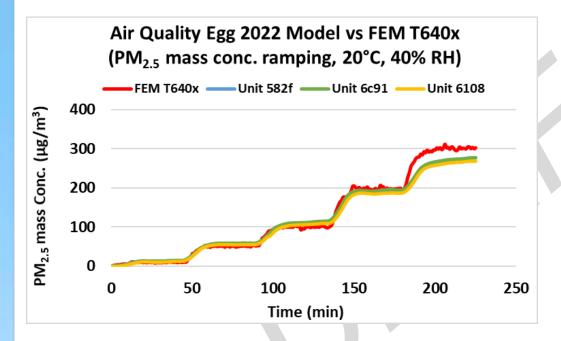
Air Quality Egg 2022 Model (3 units tested):

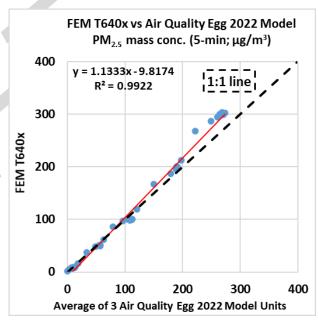
- Particle sensor: optical; non-FEM (dual Plantower PMS5003)
- Gas-phase sensor: Electrochemical; non-FEM (Winsen ZE12A)
- Each unit reports: CO (ppm), PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
- > Unit cost: \$671 (with offline data logging option)
- ➤ Time resolution: 1-min
- ≻ Units IDs: 582f, 6c91, 6108

Reference instruments:

PM_{2.5} instrument (Teledyne T640x, San Diego, CA; hereinafter FEM T640x); cost: ~\$37,000

➤ Time resolution: 1-min


FEM T640x


- 1. FEM T640x vs Air Quality Egg 2022 Model
- 2. Accuracy, data recovery, and intra-model variability
- **3.** Precision
- 4. Climate susceptibility
- 5. Discussion

Air Quality Egg 2022 Model vs FEM T640x (PM_{2.5})

Coefficient of Determination

The Air Quality Egg 2022 Model sensors tracked well with the concentration variation but overestimated PM_{2.5} at concentrations < 100 μg/m³ and underestimated PM_{2.5} at concentrations > 100 μg/m3, as compared to the FEM T640x in the concentration range of 0 - 300 μg/m³.

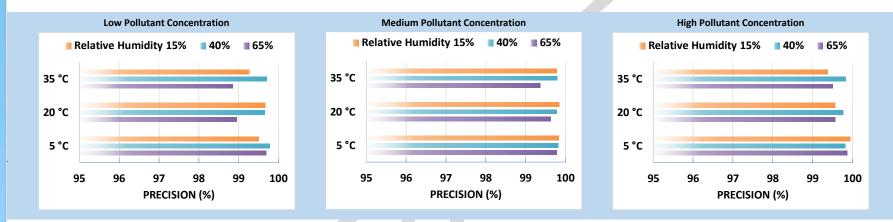
 The Air Quality Egg 2022 Model sensors showed very strong correlations with the FEM T640x PM_{2.5} mass conc. (R² > 0.99)

4

Air Quality Egg 2022 Model vs FEM T640x PM_{2.5} Accuracy

Accuracy (20 °C and 40% RH)

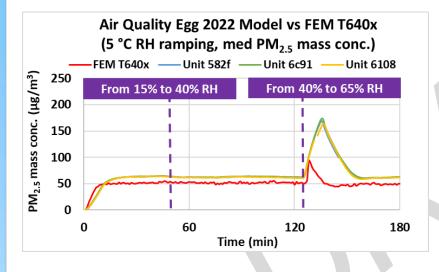
Steady State #	Sensor Mean (µg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	12.4	9.1	63.9
2	57.0	50.4	86.8
3	110.6	99.3	88.6
4	190.6	197.5	96.5
5	271.0	301.6	89.9

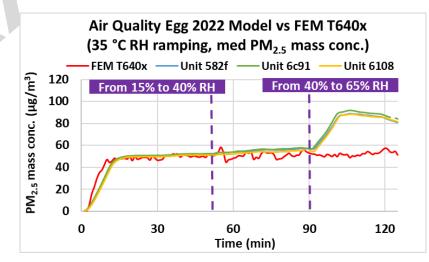

The sensors showed higher accuracy at higher PM_{2.5} concentrations (from 63.9% at the lowest concentration to 96.5% at higher PM_{2.5} concentrations).

Air Quality Egg 2022 Model Data Recovery and Intra-model Variability

- Data recovery for PM_{2.5} measurements was 100% for all three units
- Low PM_{2.5} concentration variations were observed between the three units at 20° C and 40% RH, at low, medium and high PM_{2.5} concentrations as measured by the FEM T640x.

Precision: Air Quality Egg 2022 Model


• Precision (effect of PM_{2.5} conc., temperature and relative humidity)


 Overall, Air Quality Egg 2022 Model sensors showed high precision for all the combinations of low, medium, and high PM_{2.5} conc., T, and RH.

Climate Susceptibility: Air Quality Egg 2022 Model

Low Temp - RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion: PM_{2.5}

- > Accuracy: The three Air Quality Egg 2022 Model sensors showed accuracy ranged from 63.9% to 96.5%.
- Precision: The three Air Quality Egg 2022 Model sensors exhibited high precision during all tested PM_{2.5} conc., T, and RH conditions.
- Intra-model variability: Low PM_{2.5} measurement variations were observed among the three Air Quality Egg 2022 Model sensors at 20 °C and 40% RH.
- Data Recovery: Data recovery for PM_{2.5} measurements was 100% for all three units.
- Bias: N/A
- > **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- Response time: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- Linear Correlation: The three Air Quality Egg 2022 Model sensors showed very strong correlation/linear response with the corresponding FEM T640x PM_{2.5} measurement data (R² > 0.99).
- Selectivity: N/A for PM sensors test
- Interferences: N/A for PM sensors test
- Note about PM_{1.0}: The field evaluation compared the PM_{1.0} values reported from the Air Quality Egg 2022 Model sensors against the field GRIMM and T640 that reported PM_{1.0}. However, PM_{1.0} was not compared in this lab evaluation because at the time of lab testing (before March 2022) the lab T640x firmware upgrade to report PM_{1.0} was not finalized yet.

Discussion: PM_{2.5}

- > Measurement duration: Air Quality Egg 2022 Model sensors report 1-min averaged values.
- Measurement frequency: Air Quality Egg 2022 Model sensors report 1-min averaged values. The obtained data was used as-is for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), but condensed into 5-minute averages for linear correlation studies against the FEM T640x.
- Sensor contamination and expiration: Prior to the laboratory evaluation, the Air Quality Egg 2022 Model sensors were tested in the field for two months. The PM_{2.5} laboratory studies lasted for about 9 days with intermittent non-operating periods and a storage period of ~ 1 month. For PM_{2.5} measurements, all of the Air Quality Egg 2022 Model sensors maintained their functionalities and operated normally throughout the duration of the testing.
- Concentration range: Up to 1000 µg/m³ as suggested by the manufacturer. During the laboratory evaluation, the Air Quality Egg 2022 Model sensors were challenged with PM_{2.5} concentrations up to 300 µg/m³.
- > Drift: N/A
- Climate susceptibility: During the lab studies, climate did not significantly impact precision. The sensors showed spiked concentration changes at the RH change points, especially at lower temperatures. The sensors showed enhanced PM_{2.5} concentrations at high RH values.
- Response to loss of power: Air Quality Egg 2022 Model sensors were powered through the entirety of the lab tests.