# Field Evaluation Speck Sensor

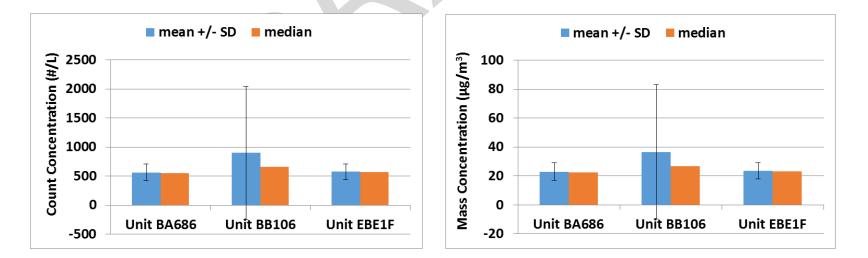


Air Quality Sensor Performance Evaluation Center

## Background

- From 04/23/2015 to 06/19/2015, three **Speck Sensors** were deployed in Rubidoux and ran side-by-side with two Federal Equivalent Method (FEM) instruments measuring the same pollutant
- <u>Speck Sensor (3 units tested)</u>:
  - Particle sensors (optical; non-FEM)
    Each unit measures: PM<sub>2.5</sub> (µg/m<sup>3</sup>)
    Unit cost: ~\$150
  - ≻Time resolution: 1-min
  - ≻Units IDs: BA686, BB106, EBE1F



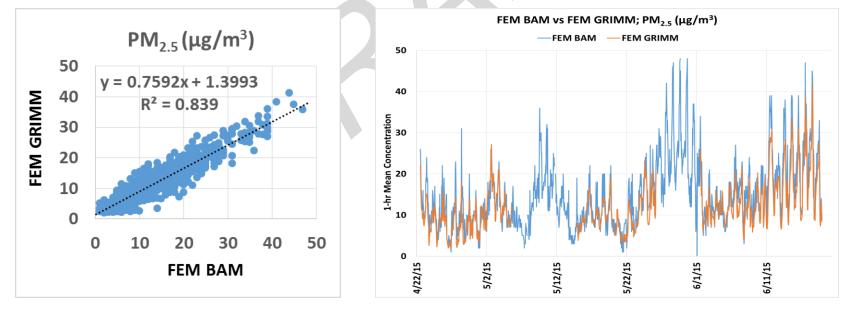

- MetOne BAM (reference method):
  - Beta-attenuation monitor (FEM)
    Measures PM<sub>2.5</sub>
    Cost: ~\$20,000
  - ➤Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
  > Optical particle counter (FEM)
  > Uses proprietary algorithms to calculate total PM, PM<sub>2.5</sub>, and PM<sub>1</sub> from particle number measurements
  > Cost: ~\$25,000 and up
  - ➤Time resolution: 1-min

### **Data validation & recovery**

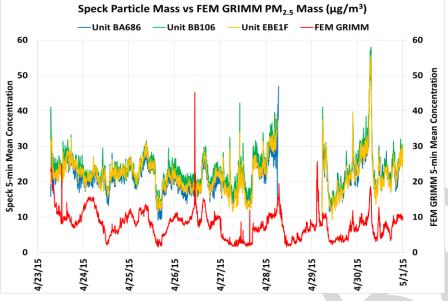
- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for  $PM_{2.5}$  was ~ 95% from all three sensors

### Speck Sensors; intra-model variability

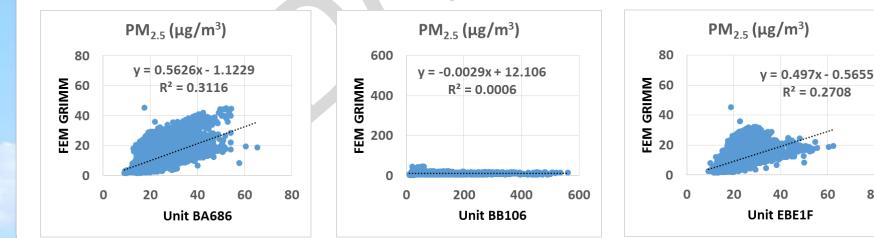
• Low measurement variations between BA686 and EBE1F were observed; BB106 showed large variability compared to the other two sensors




### **Data validation & recovery**


- Basic QA/QC procedures were used to validate the collected data from the FEM (i.e. obvious outliers, negative values and invalid data-points were eliminated from data-set)
- Data recovery for 1-hr averages of PM<sub>2.5</sub> was 99% from the FEM BAM and 73% from the FEM GRIMM (due to power outage) instruments.

### Equivalent Methods: BAM vs GRIMM


• Very good correlation between the two equivalent methods

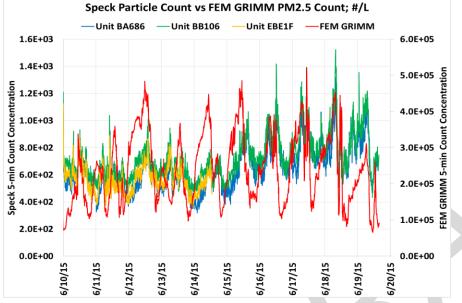


#### Speck Particle Mass vs FEM GRIMM PM<sub>2.5</sub> Mass (5-min mean)

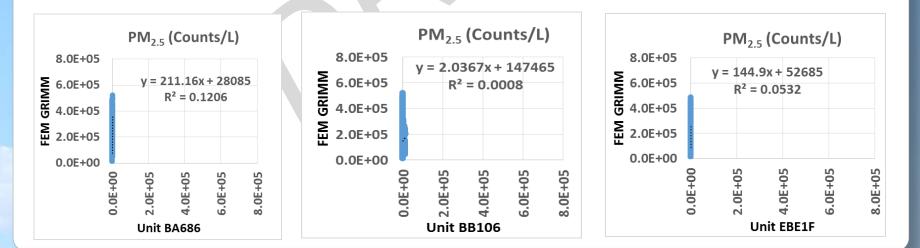


- Particle mass measurements from units BA686 and EBE1F do not correlate well ( $R^2 < 0.32$ ) and overestimate the corresponding FEM GRIMM PM<sub>2.5</sub> data.
- However, sensors' PM mass measurements seem to track the diurnal variations of the FEM GRIMM PM<sub>2.5</sub> mass data.
- Measurements from unit BB106 may not all be valid as some of its values are too high compared to the other two sensors and the FEM method used

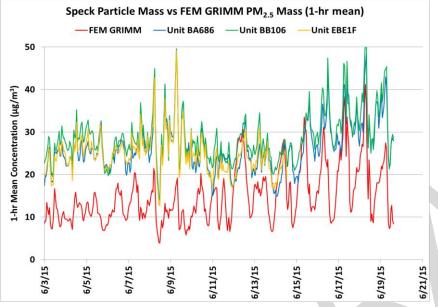




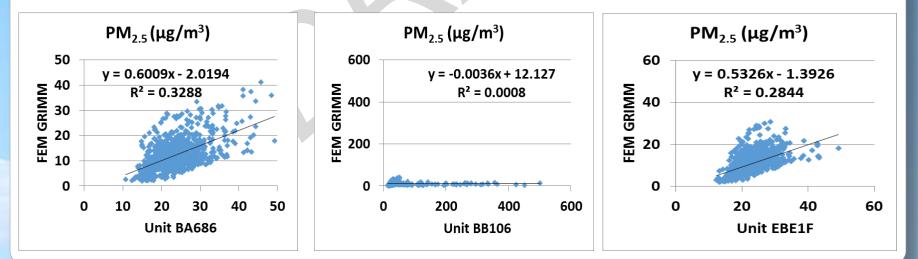

 $R^2 = 0.2708$ 


60

80

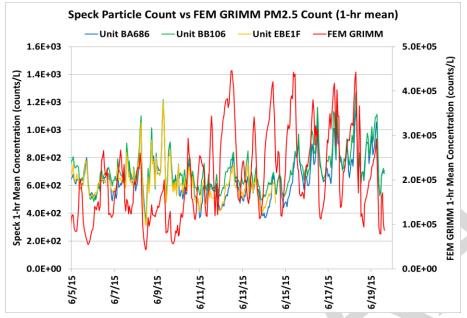

#### Speck Particle Count vs GRIMM PM<sub>2.5</sub> Count (5-min mean)



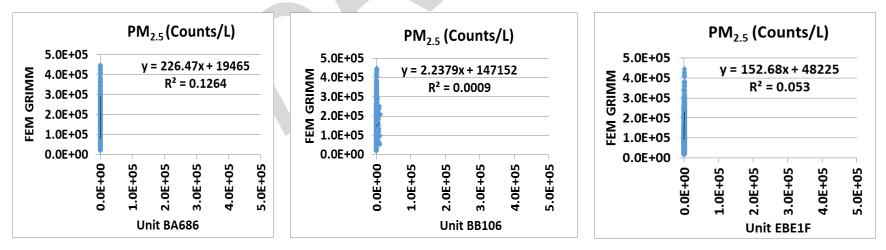

- Particle count measurements from all three speck sensors do not correlate (R<sup>2</sup>~0.0) and underestimate the corresponding GRIMM PM<sub>2.5</sub> count data.
- However, sensors' PM count measurements seem to track the diurnal variations of the GRIMM PM<sub>2.5</sub> count data.
- Measurements from BB106 may not all be valid as some of its values are too high compared to the other two sensors and the method used



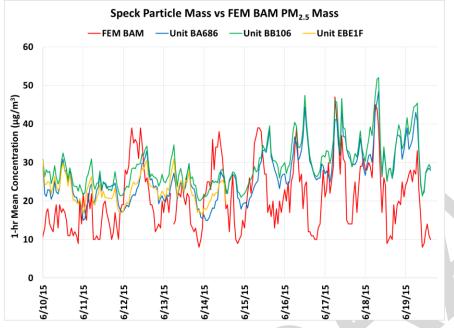
#### Speck Particle Mass vs FEM GRIMM PM<sub>2.5</sub> Mass (1-hr mean)



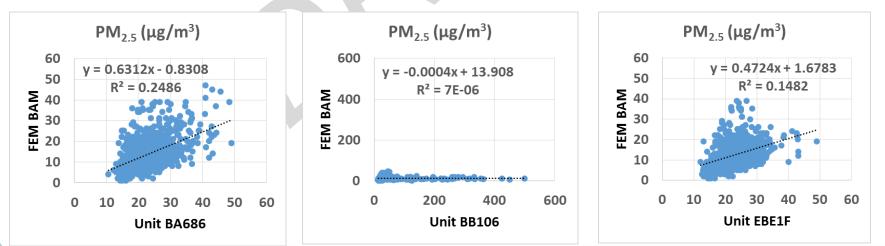

- Particle mass measurements from units BA686 and EBE1F do not correlate well ( $R^2 < 0.33$ ) and usually overestimate the corresponding FEM GRIMM PM<sub>2.5</sub> data.
- However, sensors' PM mass measurements seem to track the diurnal variations of the FEM GRIMM PM<sub>2.5</sub> mass data.
- Measurements from BB106 may not all be valid as some of its values are too high compared to the other two sensors and the FEM method used




7


#### Speck Particle Count vs GRIMM PM<sub>2.5</sub> Count (1-hr mean)




- Particle count measurements from all three speck sensors do not correlate well (R<sup>2</sup> < 0.13) and underestimate the corresponding GRIMM PM<sub>2.5</sub> count data.
- However, sensors' PM count measurements seem to track the diurnal variations of the GRIMM PM<sub>2.5</sub> count data.
- Measurements from BB106 may not all be valid as some of its values are too high compared to the other two sensors and the method used



#### Speck Particle Mass vs FEM BAM PM<sub>2.5</sub> Mass (1-hr mean)



- Particle mass measurements from units BA686 and EBE1F do not correlate well (R<sup>2</sup> < 0.25) and usually overestimate the corresponding FEM BAM PM<sub>2.5</sub> mass data.
- However, sensors' PM mass measurements seem to track the diurnal variations of the FEM BAM PM<sub>2.5</sub> mass data.
- Measurements from BB106 may not all be valid as some of its values are too high compared to the other two sensors and the FEM method used



### Discussion

- Overall, the three Speck Sensors did not perform well and showed:
  - Unit EBE1F: significant down time over a period of about two months (23% data loss)
  - Units BA686 and EBE1F: good intra-model agreement
  - Unit BB106: significant amount of off-scale values
- The three sensors did not correlate well (R<sup>2</sup> < 0.33) with the two FEM instruments (BAM and GRIMM)
- Speck mass data was usually overestimated with respect to FEM GRIMM and BAM PM<sub>2.5</sub> mass data
- Speck count data was usually underestimated with respect to GRIMM PM<sub>2.5</sub> count data, although no sensor calibration was performed prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors over different / more extreme environmental conditions
- <u>All results are preliminary</u>