Field Evaluation QuantAQ - MODULAIR-PM

- From 09/10/2021 to 11/05/2021, three QuantAQ MODULAIR-PM (hereinafter MODULAIR-PM) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- MODULAIR-PM (3 units tested):
 - Two Particle sensors: non-FEM (nephelometer Plantower PMS5003 + optical particle counter Alphasense OPC-N3)
 - Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³), Temperature (°C), RH (%)
 - Unit cost: \$1295 + \$300/yr for QuantAQ Cloud
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: 0055, 0059, 0069

- GRIMM (reference instrument):
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - > Optical particle counter (FEM $PM_{2.5}$)
 - \succ Measures PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
 - ➤ Cost: ~\$21,000
 - ➤ Time resolution: 1-min
- Met Station (T, RH, P, WS, WD):
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

PM Data Handling

- The QuantAQ MODULAIR-PM sensor uses a combination of two optical particle sensors (OPS): a nephelometer (Plantower PMS5003) and an optical particle counter (Alphasense OPC-N3) to characterize PM_{1.0}, PM_{2.5}, and PM₁₀. QuantAQ also provides users with full access to all raw data from each sensor component, including the 24-bin size distribution from the OPC-N3 (0.35 to 40 µm). The spectra from the nephelometer and OPC are then combined to form the basis of the reported in-situ PM_{1.0}, PM_{2.5}, and PM₁₀ mass concentrations.
- In addition to the raw sensor inputs, size-specific hygroscopicity and density assumptions are built into the PM models. On-board measurements of RH are used to inform and correct-for hygroscopic growth in accord with model assumptions.

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~ 100% for all PM measurements

MODULAIR-PM; intra-model variability

- Absolute intra-model variability was ~ 0.59, 0.62 and 1.77 µg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.7%, 3.2% and 6.3% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for PM_{1.0} from GRIMM and T640 was ~ 88% and 99%, respectively.
- Very strong correlations between the reference instruments for $PM_{1.0}$ measurements ($R^2 \sim 0.93$) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~ 88% and 99%, respectively.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements ($R^2 \sim 0.91$) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM₁₀ from GRIMM and T640 was ~ 88% and 99%, respectively.
- Very strong correlations between the reference instruments for PM_{10} measurements ($R^2 \sim 0.90$) were observed.

MODULAIR-PM vs GRIMM (PM_{1.0}; 5-min mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding GRIMM data (0.91 < R² < 0.95)
- Overall, the MODULAIR-PM sensors overestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The MODULAIR-PM sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

MODULAIR-PM vs FEM GRIMM (PM_{2.5}; 5-min mean)

MODULAIR-PM vs GRIMM (PM₁₀; 5-min mean)

- The MODULAIR-PM sensors showed weak to moderate correlations with the corresponding GRIMM data (0.45 < R² < 0.57)
- Overall, the MODULAIR-PM sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

MODULAIR-PM vs GRIMM (PM_{1.0}; 1-hr mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding GRIMM data (0.92 < R² < 0.95)
- Overall, the MODULAIR-PM sensors overestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The MODULAIR-PM sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

MODULAIR-PM vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The MODULAIR-PM sensors showed strong correlations with the corresponding FEM GRIMM data (0.87 < R² < 0.90)
- Overall, the MODULAIR-PM sensors overestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The MODULAIR-PM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

MODULAIR-PM vs GRIMM (PM₁₀; 1-hr mean)

- The MODULAIR-PM sensors showed weak to moderate correlations with the corresponding GRIMM data (0.47 < R² < 0.59)
- Overall, the MODULAIR-PM sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

MODULAIR-PM vs GRIMM (PM₁₀; 24-hr mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding GRIMM data $(0.95 < R^2 < 0.98)$
- Overall, the MODULAIR-PM sensors overestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

MODULAIR-PM vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding FEM GRIMM data $(0.94 < R^2 < 0.96)$
- Overall, the MODULAIR-PM sensors overestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The MODULAIR-PM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM

MODULAIR-PM vs GRIMM (PM₁₀; 24-hr mean)

- The MODULAIR-PM sensors showed weak to moderate correlations with the corresponding GRIMM data (0.37 < R² < 0.51)
- Overall, the MODULAIR-PM sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

MODULAIR-PM vs T640 (PM_{1.0}; 5-min mean)

- The MODULAIR-PM sensors showed strong to very strong correlations with the corresponding T640 data (0.87 < R² < 0.91)
- Overall, the MODULAIR-PM sensors overestimated the PM_{1.0} mass concentrations as measured by T640
- The MODULAIR-PM sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

MODULAIR-PM vs FEM T640 (PM_{2.5}; 5-min mean)

- The MODULAIR-PM sensors showed strong correlations with the corresponding FEM T640 data (0.83 < R² < 0.88)
- Overall, the MODULAIR-PM sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The MODULAIR-PM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

MODULAIR-PM vs T640 (PM₁₀; 5-min mean)

- MODULAIR-PM sensors showed moderate to strong correlations with the corresponding T640 data (0.66 < R² < 0.78)
- Overall, the MODULAIR-PM sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

MODULAIR-PM vs T640 (PM_{1.0}; 1-hr mean)

- The MODULAIR-PM sensors showed strong to very strong correlations with the corresponding T640 data (0.87 < R² < 0.91)
- Overall, the MODULAIR-PM sensors overestimated the PM_{1.0} mass concentrations as measured by T640
- The MODULAIR-PM sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

MODULAIR-PM vs FEM T640 (PM_{2.5}; 1-hr mean)

- The MODULAIR-PM sensors showed strong correlations with the corresponding FEM T640 data (0.84 < R² < 0.89)
- Overall, the MODULAIR-PM sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The MODULAIR-PM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

21

MODULAIR-PM vs T640 (PM₁₀; 1-hr mean)

- The MODULAIR-PM sensors showed moderate to strong correlations with the corresponding T640 data (0.68 < R² < 0.80)
- Overall, the MODULAIR-PM sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

MODULAIR-PM vs T640 (PM_{1.0}; 24-hr mean)

MODULAIR-PM vs FEM T640 (PM_{2.5}; 24-hr mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding FEM T640 data (0.96 < R² < 0.98)
- Overall, the MODULAIR-PM sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The MODULAIR-PM sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

MODULAIR-PM vs T640 (PM₁₀; 24-hr mean)

- The MODULAIR-PM sensors showed moderate to strong correlations with the corresponding T640 data (0.65 < R² < 0.82)
- Overall, the MODULAIR-PM sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The MODULAIR-PM sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

	Average of 3 Sensors, PM _{1.0}		MODULAIR-PM vs GRIMM & T640, PM _{1.0}						GRIMM & T640 (PM _{1.0} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	16.2	11.2	0.87 to 0.94	0.63 to 0.68	-0.8 to 1.2	3.7 to 6.8	4.1 to 6.8	5.7 to 8.3	10.6 to 11.8	7.7 to 7.8	0.2 to 72.2
1-hr	16.1	11.1	0.87 to 0.95	0.63 to 0.69	-0.9 to 1.2	3.7 to 6.8	4.0 to 6.8	5.7 to 8.3	10.6 to 11.8	7.6 to 7.7	0.3 to 50.7
24-hr	16.2	8.5	0.95 to 0.98	0.65 to 0.77	-1.3 to 0.1	3.7 to 6.9	3.7 to 6.9	4.2 to 7.6	10.7 to 11.8	6.1 to 6.3	2.2 to 29.6
	Average of 3 Sensors, PM _{2.5}		MODULAIR-PM vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	19.4	12.6	0.84 to 0.88	0.62 to 0.67	2.8 to 4.0	2.9 to 4.8	4.0 to 5.2	5.9 to 7.5	15.5 to 16.6	8.6 to 8.9	0.6 to 81.5
1-hr	19.3	12.5	0.84 to 0.90	0.62 to 0.68	2.8 to 4.0	2.8 to 4.8	3.9 to 5.2	5.8 to 7.4	15.5 to 16.6	8.5 to 8.8	0.9 to 57.4
24-hr	19.3	9.3	0.94 to 0.98	0.62 to 0.72	1.4 to 4.0	2.9 to 4.8	3.2 to 4.9	4.3 to 6.0	15.5 to 16.7	6.3 to 6.6	5.4 to 33.6
	Average of 3 Sensors, PM ₁₀		MODULAIR-PM vs GRIMM & T640, PM ₁₀						GRIMM & T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	28.3	15.3	0.46 to 0.78	1.20 to 1.67	1.8 to 10.3	-21.5 to -13.1	14.7 to 21.6	21.0 to 28.5	43.2 to 47.3	24.1 to 27.7	0.8 to 414.7
1-hr	28.3	14.8	0.47 to 0.79	1.17 to 1.67	1.8 to 11.6	-21.9 to -13.1	14.6 to 22.0	19.8 to 28.4	43.2 to 47.3	22.4 to 26.7	1.2 to 374.1
24-hr	28.4	9.5	0.37 to 0.81	0.94 to 1.45	3.4 to 19.4	-22.1 to -13.0	13.5 to 22.1	16.3 to 24.3	43.3 to 47.3	14.0 to 15.7	16.0 to 94.6

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

MODULAIR-PM vs South Coast AQMD Met Station (Temp; 5-min mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.92)
- Overall, the MODULAIR-PM sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The MODULAIR-PM sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

MODULAIR-PM vs South Coast AQMD Met Station (RH; 5-min mean)

- The MODULAIR-PM sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.94)
- Overall, the MODULAIR-PM sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The MODULAIR-PM sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

28

Discussion

- The three **MODULAIR-PM** sensors' data recovery from all units was ~ 100% for all PM measurements
- The absolute intra-model variability was ~ 0.59, 0.62 and 1.77 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- Very strong correlations between GRIMM and T640 for PM_{1.0} (R² ~ 0.93, 1-hr mean); very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~ 0.91, 1-hr mean) and very strong correlations between GRIMM and T640 for PM₁₀ (R² ~ 0.90, 1-hr mean) mass concentration measurements
- PM_{1.0} mass concentrations measured by the MODULAIR-PM sensors showed strong to very strong correlations with the corresponding GRIMM and T640 data (0.87 < R² < 0.95, 1-hr mean). The sensors overestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by the MODULAIR-PM sensors showed strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.84 < R² < 0.90, 1-hr mean). The sensors overestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by the MODULAIR-PM sensors showed weak to strong correlations with the corresponding GRIMM and T640 data (0.47 < R² < 0.80; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- <u>All results are still preliminary</u>