Field Evaluation Qingping - Air Monitor Lite

- From 11/07/2022 to 01/07/2023, three **Qingping Air Monitor Lite** sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>Qingping Air Monitor Lite (3 units tested)</u>:
 - Particle sensor: optical; non-FEM (Grandway, Model 7500)
 - Each unit reports: PM_{2.5} and PM₁₀ (µg/m³), T (°C), RH (%)
 - ≻ Unit cost: \$96
 - ➤ Time resolution: 1-min
 - ➢ Units IDs: BE8A, C4F1, CAB7

- GRIMM EDM180 (reference instrument):
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - > Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ➤ Cost: ~\$21,000
 - Time resolution: 1-min
- <u>Met Station (T, RH, P, WS, WD)</u>:
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

FEM GRIMM

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~97% for $PM_{2.5}$ and PM_{10} mass concentration measurements

Qingping Air Monitor Lite; intra-model variability

- Absolute intra-model variability was ~0.35 and ~0.37 µg/m³ for PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~3.6% and ~3.6% for PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~96.7% and ~100%, respectively.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements (R² ~0.97) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM₁₀ from GRIMM and T640 was ~96.7% and ~100%, respectively.
- Very strong correlations between the reference instruments for PM_{10} measurements (R² ~0.97) were observed.

Qingping Air Monitor Lite vs FEM GRIMM (PM_{2.5}; 5-min mean)

- The Qingping Air Monitor Lite sensors showed strong correlations with the corresponding FEM GRIMM data ($0.84 < R^2 < 0.86$)
- Overall, the Qingping Air Monitor Lite sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Qingping Air Monitor Lite sensors seemed to track the PM_{2.5} diurnal variations as recorded by

 $R^2 = 0.8526$

Qingping Air Monitor Lite vs GRIMM (PM₁₀; 5-min mean)

- The Qingping Air Monitor Lite sensors showed weak correlations with the corresponding GRIMM data (0.36 < R² < 0.38)
- Overall, the Qingping Air Monitor Lite sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Qingping Air Monitor Lite sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

Qingping Air Monitor Lite vs FEM GRIMM (PM_{2.5}; 1-hr mean)

Qingping Air Monitor Lite vs GRIMM (PM₁₀; 1-hr mean)

- The Qingping Air Monitor Lite sensors showed weak correlations with the corresponding GRIMM data (0.39 < R² < 0.41)
- Overall, the Qingping Air Monitor Lite sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Qingping Air Monitor Lite sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

Qingping Air Monitor Lite vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Qingping Air Monitor Lite vs GRIMM (PM₁₀; 24-hr mean)

- The Qingping Air Monitor Lite sensors showed weak correlations with the corresponding GRIMM data (0.44 < R² < 0.45)
- Overall, the Qingping Air Monitor Lite sensors overestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Qingping Air Monitor Lite sensors sometimes seemed to track the PM₁₀ daily variations as recorded by GRIMM

 PM_{10} (24-hr mean, $\mu g/m^3$)

v = 1.6978x + 7.7853

 $R^2 = 0.4421$

40

20

Unit CAB7

0

Qingping Air Monitor Lite vs FEM T640 (PM_{2.5}; 5-min mean)

Qingping Air Monitor Lite vs T640 (PM₁₀; 5-min mean)

Qingping Air Monitor Lite vs FEM T640 (PM_{2.5}; 1-hr mean)

Qingping Air Monitor Lite vs T640 (PM₁₀; 1-hr mean)

- The Qingping Air Monitor Lite sensors showed weak correlations with the corresponding T640 data (0.43 < R² < 0.46)
- Overall, the Qingping Air Monitor Lite sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Qingping Air Monitor Lite sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

Qingping Air Monitor Lite vs FEM T640 (PM_{2.5}; 24-hr mean)

Qingping Air Monitor Lite vs T640 (PM₁₀; 24-hr mean)

- The Qingping Air Monitor Lite sensors showed weak correlations with the corresponding T640 data (0.42 < R² < 0.44)
- Overall, the Qingping Air Monitor Lite sensors overestimated the PM₁₀ mass concentrations as measured by T640
- The Qingping Air Monitor Lite sensors seemed to track the PM₁₀ daily variations as recorded by T640

Qingping Air Monitor Lite vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Qingping Air Monitor Lite sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.94 < R² < 0.96)
- Overall, the Qingping Air Monitor Lite sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Qingping Air Monitor Lite sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Qingping Air Monitor Lite vs South Coast AQMD Met Station (RH; 5-min mean)

- The Qingping Air Monitor Lite sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.97)
- Overall, the Qingping Air Monitor Lite sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Qingping Air Monitor Lite sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

	Averaç Sensor	ge of 3 s, PM _{2.5}	Qingping Air Monitor Lite vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m ³)	SD (µg/m³)	R²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	9.8	7.5	0.85 to 0.93	0.96 to 1.15	1.7 to 1.8	-3.2 to -1.3	1.8 to 3.6	2.5 to 4.9	11.5 to 12.8	7.8 to 9.0	0.3 to 102.7
1-hr	9.8	7.3	0.89 to 0.95	0.97 to 1.18	1.4 to 1.5	-3.2 to -1.3	1.7 to 3.5	2.2 to 4.5	11.5 to 12.8	7.6 to 8.7	0.4 to 43.9
24-hr	9.8	5.0	0.91 to 0.96	0.96 to 1.18	1.4 to 1.6	-3.2 to -1.2	1.5 to 3.3	1.7 to 3.7	11.5 to 12.9	5.1 to 5.8	2.7 to 27.9
	Average of 3 Sensors, PM ₁₀		Qingping Air Monitor Lite vs GRIMM & T640, PM ₁₀						GRIMM & T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m ³)	SD (µg/m³)	R²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	10.2	7.8	0.37 to 0.43	1.49 to 1.63	10.4 to 13.9	-20.1 to -15.9	16.2 to 20.1	22.8 to 25.1	27.1 to 30.3	18.8 to 20.1	0.4 to 160.9
1-hr	10.2	7.5	0.40 to 0.45	1.53 to 1.66	9.8 to 13.6	-20.1 to -15.8	16.1 to 20.1	22.1 to 24.7	27.1 to 30.3	18.1 to 19.2	0.6 to 122.4
24-hr	10.2	5.2	0.43 to 0.45	1.54 to 1.84	7.7 to 13.6	-20.1 to -15.5	15.6 to 20.1	19.0 to 22.6	26.9 to 30.3	12.7 to 13.6	3.7 to 63.6

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Discussion

- The three Qingping Air Monitor Lite sensors' data recovery was ~97% for PM_{2.5} and PM₁₀ mass concentration measurements
- The absolute intra-model variability was ~0.35 and ~0.37 μ g/m³ for PM_{2.5} and PM₁₀, respectively
- Reference instruments: very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~0.97, 1-hr mean) and very strong correlations between GRIMM and T640 for PM₁₀ (R² ~0.97, 1-hr mean) mass concentration measurements
- PM_{2.5} mass concentrations measured by the Qingping Air Monitor Lite sensors showed strong to very strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.89 < R² < 0.95, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by the Qingping Air Monitor Lite sensors showed weak correlations with the corresponding GRIMM and T640 data (0.39 < R² < 0.46; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary