Field Evaluation Qingping - Air Monitor

- From 11/07/2022 to 01/07/2023, three Qingping Air Monitor sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>Qingping Air Monitor (3 units tested)</u>:
 - Particle sensor: optical; non-FEM (Grandway, Model P5500)
 - > Each unit reports: $PM_{2.5}$ (µg/m³), T (°C), RH (%)
 - ➤ Unit cost: \$135
 - > Also measures: CO_2 (ppm) and tVOC (ppb)
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: 39F5, 37DA, 3956

- GRIMM EDM180 (reference instrument):
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - > Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ➤ Cost: ~\$21,000
 - Time resolution: 1-min
- Met Station (T, RH, P, WS, WD):
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

FEM GRIMM

FEM T640

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~100% for PM_{2.5} mass concentration measurements

Qingping Air Monitor; intra-model variability

- Absolute intra-model variability was ~0.43 µg/m³ for PM_{2.5} mass concentration measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~3.4% for PM_{2.5} mass concentration measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~96.7% and ~100%, respectively.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements (R² ~0.97) were observed.

Qingping Air Monitor vs FEM GRIMM (PM_{2.5}; 5-min mean)

Qingping Air Monitor vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The Qingping Air Monitor sensors showed strong correlations with the corresponding FEM GRIMM data (0.89 < R² < 0.90)
- Overall, the Qingping Air Monitor sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Qingping Air Monitor sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

Qingping Air Monitor vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The Qingping Air Monitor sensors showed very strong correlations with the corresponding FEM GRIMM data (0.90 < R² < 0.92)
- Overall, the Qingping Air Monitor sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Qingping Air Monitor sensors seemed to track the PM_{2.5} daily variations as recorded by FEM GRIMM

Qingping Air Monitor vs FEM T640 (PM_{2.5}; 5-min mean)

Qingping Air Monitor vs FEM T640 (PM_{2.5}; 1-hr mean)

C

Qingping Air Monitor vs FEM T640 (PM_{2.5}; 24-hr mean)

- The Qingping Air Monitor sensors showed very strong correlations with the corresponding FEM T640 data (0.95 < R² < 0.97)
- Overall, the Qingping Air Monitor sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Qingping Air Monitor sensors seemed to track the PM_{2.5} daily variations as recorded by FEM T640

Qingping Air Monitor vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Qingping Air Monitor sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.95)
- Overall, the Qingping Air Monitor sensors underestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Qingping Air Monitor sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Qingping Air Monitor vs South Coast AQMD Met Station (RH; 5-min mean)

- The Qingping Air Monitor sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Qingping Air Monitor sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Qingping Air Monitor sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

	Averaç Sensor	ge of 3 s, PM _{2.5}	Qingping Air Monitor vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , µg/m ³)		
	Average (µg/m ³)	SD (µg/m³)	R²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	12.4	9.1	0.86 to 0.90	0.79 to 0.94	1.0 to 1.6	-0.8 to 1.3	1.8 to 2.3	2.9 to 3.5	11.5 to 12.8	7.8 to 9.0	0.3 to 102.7
1-hr	12.4	8.8	0.89 to 0.95	0.82 to 0.96	0.8 to 1.3	-0.8 to 1.3	1.4 to 2.0	2.1 to 3.0	11.5 to 12.8	7.6 to 8.7	0.4 to 43.9
24-hr	12.4	6.0	0.91 to 0.96	0.82 to 0.96	0.8 to 1.3	-0.8 to 1.3	0.9 to 1.5	1.3 to 2.0	11.5 to 12.9	5.1 to 5.8	2.7 to 27.9

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Discussion

- The three **Qingping Air Monitor** sensors' data recovery was ~100% for PM_{2.5} mass concentration measurements
- The absolute intra-model variability was ~0.43 μ g/m³ for PM_{2.5} mass concentration measurements
- Reference instruments: very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~0.97, 1-hr mean) mass concentration measurements
- PM_{2.5} mass concentrations measured by the Qingping Air Monitor sensors showed strong to very strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.89 < R² < 0.95, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and overestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and overestimated PM_{2.5} mass
- No sensor calibration was performed by South Coast AQMD Staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary