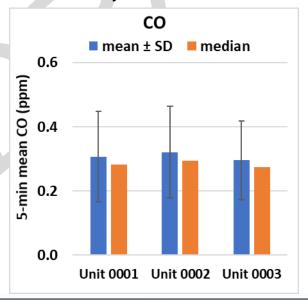
Field Evaluation Oizom – Polludrone Smart

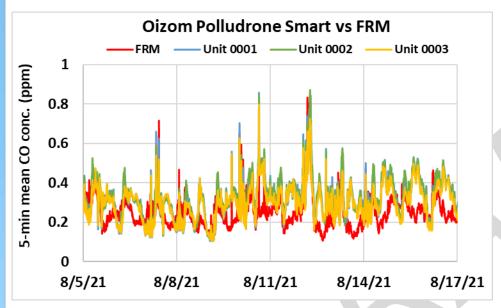
Background

- From 07/31/2021 to 09/29/2021, three Oizom Polludrone Smart (hereinafter Polludrone Smart) multi-sensor pods were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants
- Polludrone Smart (3 units tested):
 - Sensors: CO Electrochemical (Alphasense B4, non-FEM)
 - O₃ Electrochemical (Alphasense B4, non-FEM) NO – Electrochemical (Alphasense B4, non-FEM) NO₂ – Electrochemical (Alphasense B4, non-FEM)
 - PM Sensors Optical Particle Counter (Wuhan Cubic PM3006S)
 - Each unit measures: CO (ppm), O₃ (ppb), NO and NO₂ (ppb), PM_{1.0}, PM_{2.5} and PM₁₀ (μg/m³), T (°C), RH (%)
 - Unit cost: \$8,000 (PM + Gas sensors)
 - > Time resolution: 1-min
 - > Units IDs: 0001, 0002, 0003

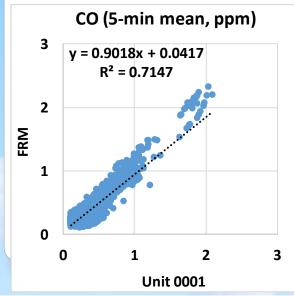
- South Coast AQMD Reference instruments:
 - ➤ CO instrument (FRM); cost: ~\$7,000
 - ➤ Time resolution; 1-min
 - ➤ O₃ instrument (FEM); cost: ~\$7,000
 - ➤ Time resolution; 1-min
 - ➤ NO_x instrument (FRM NO₂); cost: ~\$13,000
 - > Time resolution: 1-min
 - ➤ Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - > Time resolution: 1-min

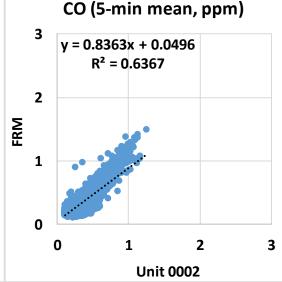

Carbon Monoxide (CO) in Polludrone Smart

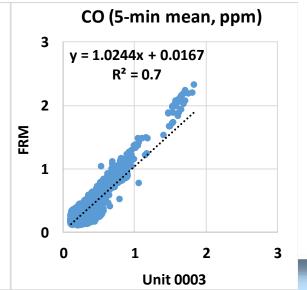
Data validation & recovery

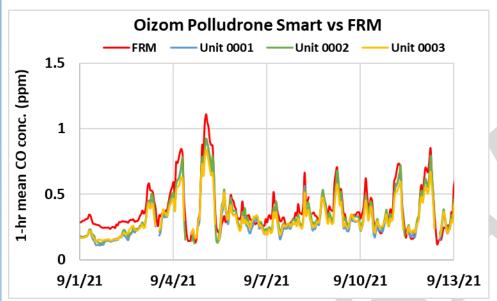

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for CO from Unit 0001, Unit 0002 and Unit 0003 was ~ 99%, 95% and 99%, respectively

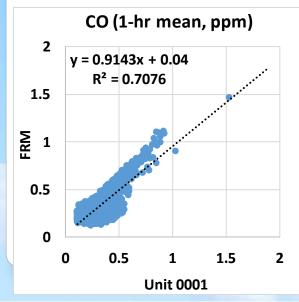
Polludrone Smart; Intra-model variability

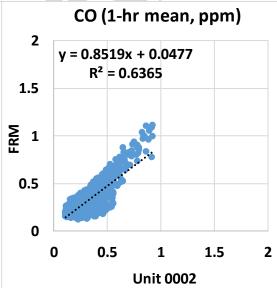

- Absolute intra-model variability was ~ 0.01 ppm for the CO measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.4% for the CO measurements
 (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

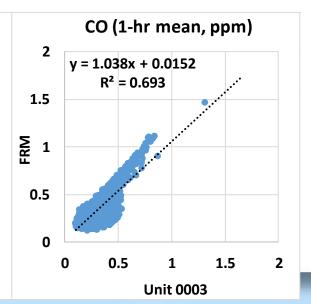


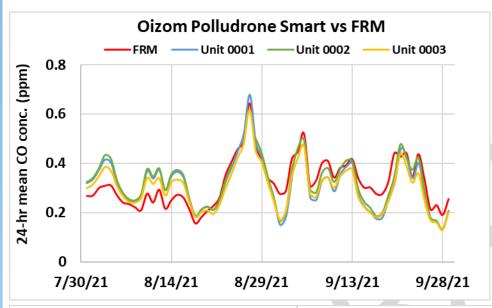

Polludrone Smart vs FRM (CO; 5-min mean)

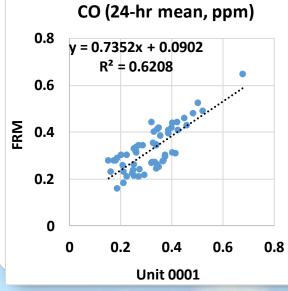

- The Polludrone Smart sensors showed moderate to strong correlations with the corresponding FRM CO data (0.63 < R² < 0.72)
- Overall, the Polludrone Smart sensors underestimated the CO concentrations as measured by the FRM CO instrument
- The Polludrone Smart sensors seemed to track the diurnal CO variations as recorded by the FRM CO instrument

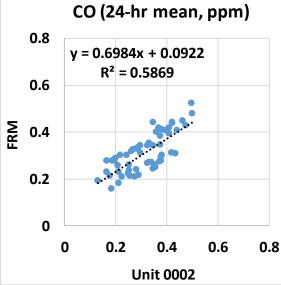


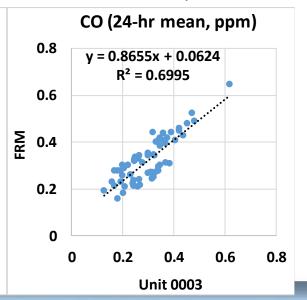



Polludrone Smart vs FRM (CO; 1-hr mean)


- The Polludrone Smart sensors showed moderate to strong correlations with the corresponding FRM CO data (0.63 < R² < 0.71)
- Overall, the Polludrone Smart sensors underestimated the CO concentrations as measured by the FRM CO instrument
- The Polludrone Smart sensors seemed to track the diurnal CO variations as recorded by the FRM CO instrument






Polludrone Smart vs FRM (CO; 24-hr mean)

- The Polludrone Smart sensors showed moderate correlations with the corresponding FRM CO data (0.58 < R² < 0.70)
- Overall, the Polludrone Smart sensors underestimated the CO concentrations as measured by the FRM CO instrument
- The Polludrone Smart sensors seemed to track the diurnal CO variations as recorded by the FRM CO instrument

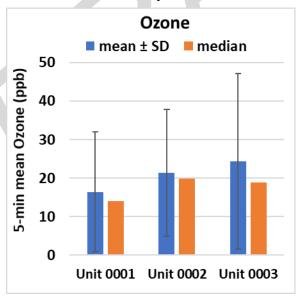
Summary: CO

	Average Sensors		Polludrone Smart vs FRM, CO							FRM CO (ppm)		
	Average (ppm)	SD (ppm)	R ²	Slope	Intercept	MBE ¹ (ppm)	MAE ² (ppm)	RMSE ³ (ppm)	FRM Average	FRM SD	Range during the field evaluation	
5-min	0.31	0.15	0.64 to 0.71	0.84 to 1.02	0.02 to 0.05	-0.02 to 0.003	0.076 to 0.081	0.093 to 0.098	0.32	0.17	0.10 to 2.33	
1-hr	0.31	0.14	0.64 to 0.71	0.85 to 1.04	0.02 to 0.05	-0.03 to -0.001	0.075 to 0.080	0.090 to 0.097	0.33	0.17	0.12 to 2.10	
24-hr	0.31	0.09	0.59 to 0.70	0.70 to 0.87	0.06 to 0.09	-0.02 to 0.003	0.051 to 0.054	0.058 to 0.064	0.32	0.10	0.16 to 0.65	

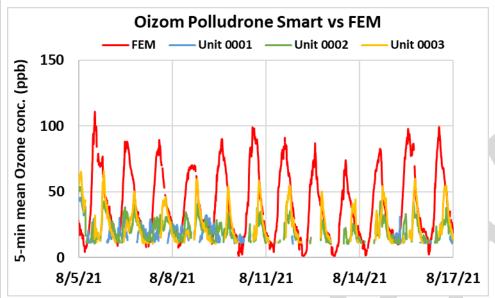
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

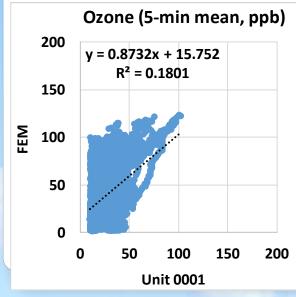
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

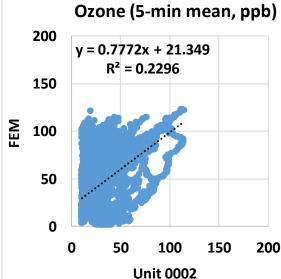

Ozone (O₃) in Polludrone Smart

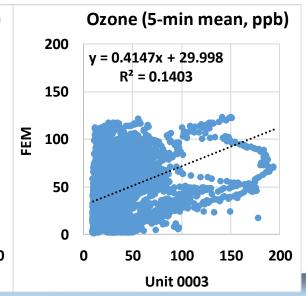
Data validation & recovery

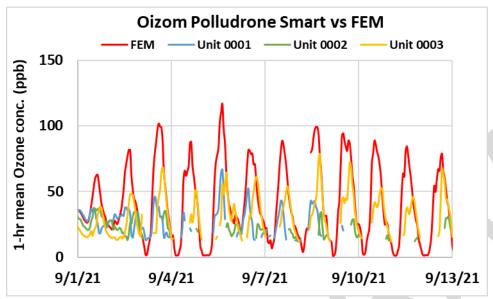

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for ozone from Unit 0001, Unit 0002 and Unit 0003 was ~ 99%, 95% and 99%, respectively

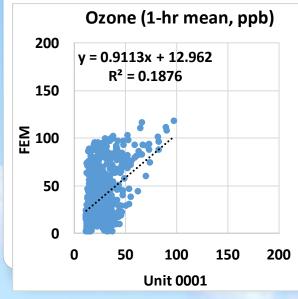
Polludrone Smart; Intra-model variability

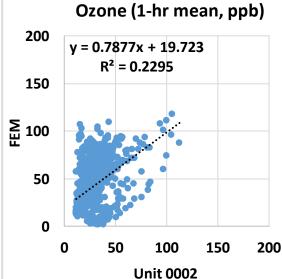

- Absolute intra-model variability was ~ 3.3 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 15.7% for the ozone measurements
 (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

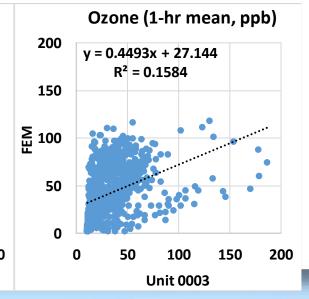


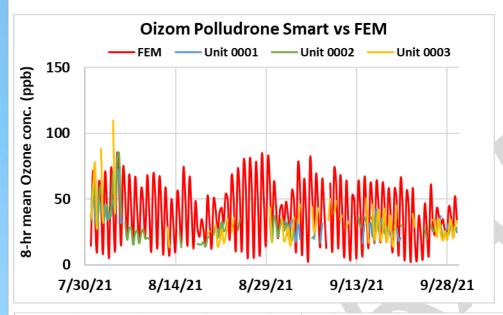

Polludrone Smart vs FEM (Ozone; 5-min mean)

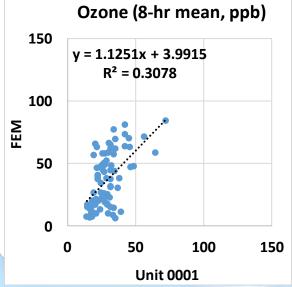

- The Polludrone Smart sensors showed very weak correlations with the corresponding FEM ozone data (0.14 < R² < 0.23)
- Overall, the Polludrone Smart sensors underestimated the ozone concentrations as measured by the FEM ozone instrument
- The Polludrone Smart sensors did not seem to track the diurnal ozone variations as recorded by the FEM ozone instrument

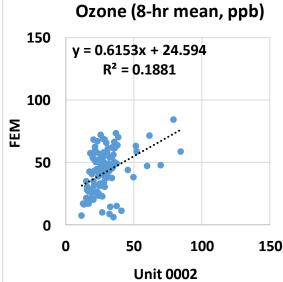


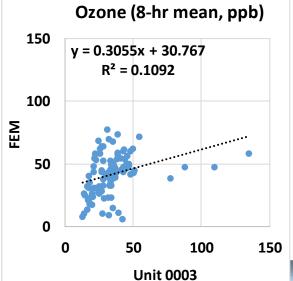



Polludrone Smart vs FEM (Ozone; 1-hr mean)


- The Polludrone Smart sensors showed very weak correlations with the corresponding FEM ozone data (0.15 < R² < 0.23)
- Overall, the Polludrone Smart sensors underestimated the ozone concentrations as measured by the FEM ozone instrument
- The Polludrone Smart sensors did not seem to track the diurnal ozone variations as recorded by the FEM ozone instrument






Polludrone Smart vs FEM (Ozone; 8-hr mean)

- The Polludrone Smart sensors showed very weak to weak correlations with the corresponding FEM ozone data (0.10 < R² < 0.31)
- Overall, the Polludrone Smart sensors underestimated the ozone concentrations as measured by the FEM ozone instrument
- The Polludrone Smart sensors did not seem to track the diurnal ozone variations as recorded by the FEM ozone instrument

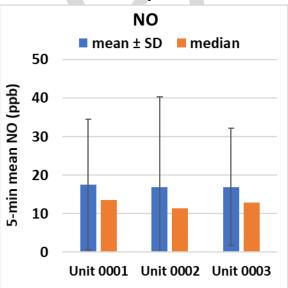
Summary: Ozone

	Average Sensors,		Polludrone Smart vs FEM, Ozone							FEM Ozone (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FEM Average	FEM SD	Range during the field evaluation	
5-min	29.4	16.3	0.14 to 0.23	0.41 to 0.87	15.8 to 30.0	-15.0 to -12.3	18.9 to 19.7	25.6 to 28.9	41.1	27.3	1.1 to 123.1	
1-hr	29.9	16.0	0.16 to 0.23	0.45 to 0.91	13.0 to 27.1	-13.6 to -8.9	17.9 to 18.4	24.5 to 27.2	39.5	26.9	1.2 to 117.5	
8-hr	31.3	13.3	0.11 to 0.31	0.31 to 1.13	4.0 to 30.8	-13.2 to -6.7	14.8 to 17.3	15.6 to 20.9	39.6	22.2	2.3 to 84.1	

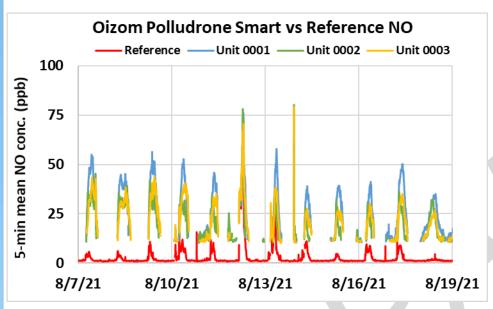
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

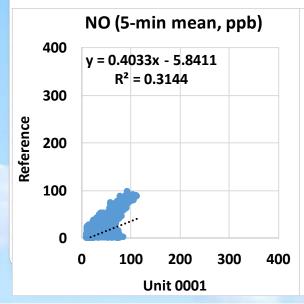

Nitric Oxide (NO) in Polludrone Smart

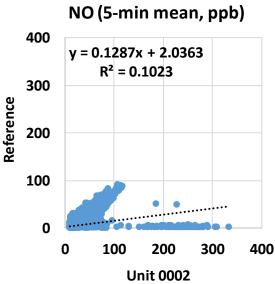
Data validation & recovery

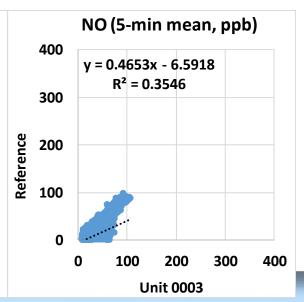

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for NO from Unit 0001, Unit 0002 and Unit 0003 was ~ 99%, 95% and 99%, respectively

Polludrone Smart; Intra-model variability

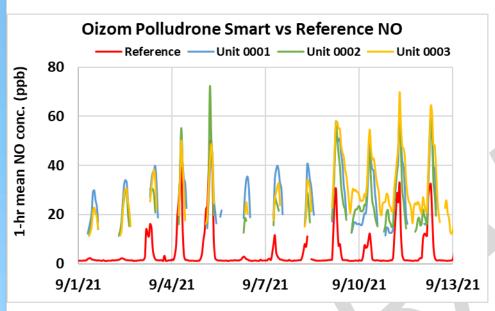
- Absolute intra-model variability was ~ 0.3 ppb for the NO measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 1.8% for the NO measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

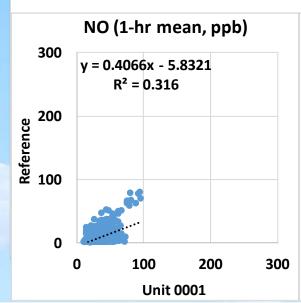


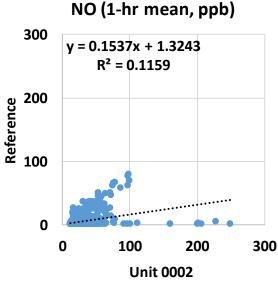

Polludrone Smart vs Reference (NO; 5-min mean)

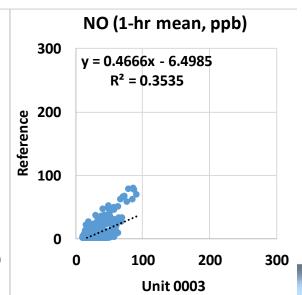


- The Polludrone Smart sensors showed very weak to weak correlations with the corresponding reference NO data (0.10 < R² < 0.36)
- Overall, the Polludrone Smart sensors overestimated the NO concentrations as measured by the reference instrument
- The Polludrone Smart sensors did not seem to track the diurnal NO variations as recorded by the reference instrument


Note: Values that were below the manufacturer's stated Limit of Detection (LOD) were removed and not included in this analysis. 24-hr data not shown as a result of lack of data from the sensors due to values below LOD being removed.




Polludrone Smart vs Reference (NO; 1-hr mean)



- The Polludrone Smart sensors showed very weak to weak correlations with the corresponding reference NO data (0.11 < R² < 0.36)
- Overall, the Polludrone Smart sensors overestimated the NO concentrations as measured by the reference instrument
- The Polludrone Smart sensors did not seem to track the diurnal NO variations as recorded by the reference instrument

Note: Values that were below the manufacturer's stated Limit of Detection (LOD) were removed and not included in this analysis. 24-hr data not shown as a result of lack of data from the sensors due to values below LOD being removed.

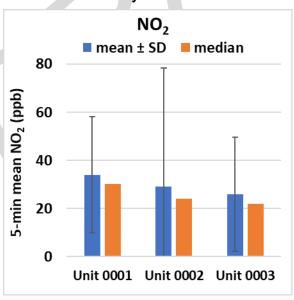
Summary: NO

	Average of 3 Sensors, NO		Polludrone Smart vs Reference, NO							Reference NO (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM Average	LKINI OD	Range during the field evaluation	
5-min	28.3	18.6	0.10 to 0.35	0.13 to 0.47	-6.6 to 2.0	21.0 to 24.5	21.1 to 24.6	23.9 to 35.3	4.1	8.7	0.01 to 97.1	
1-hr	28.7	17.1	0.12 to 0.35	0.15 to 0.47	-6.5 to 1.3	20.7 to 24.6	20.8 to 24.7	23.4 to 32.9	4.0	8.2	0.2 to 79.3	

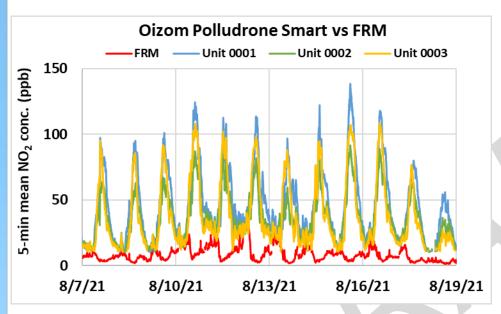
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

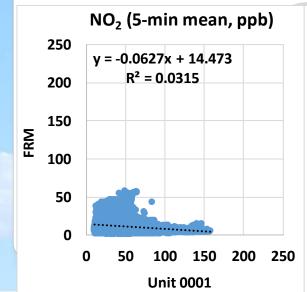
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

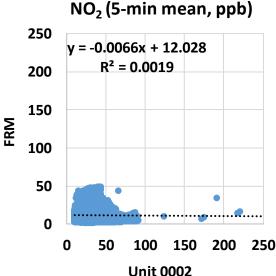

Nitrogen Dioxide (NO₂) in Polludrone Smart

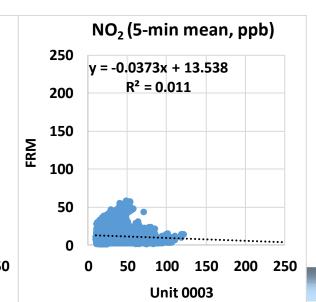
Data validation & recovery

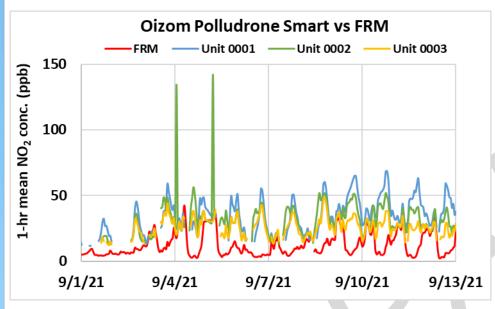

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ from Unit 0001, Unit 0002 and Unit 0003 was ~ 99%, 95% and 99%, respectively

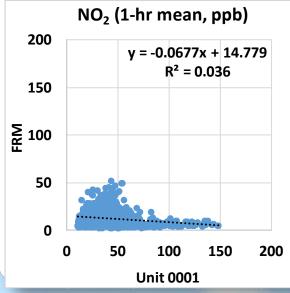
Polludrone Smart; Intra-model variability

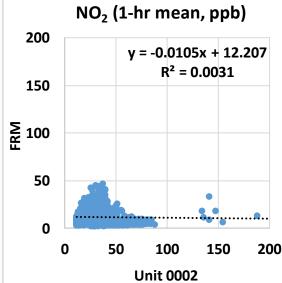

- Absolute intra-model variability was ~ 3.3 ppb for the NO₂ measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 11.2% for the NO₂ measurements
 (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

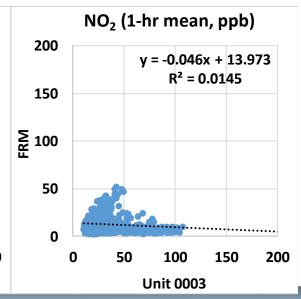


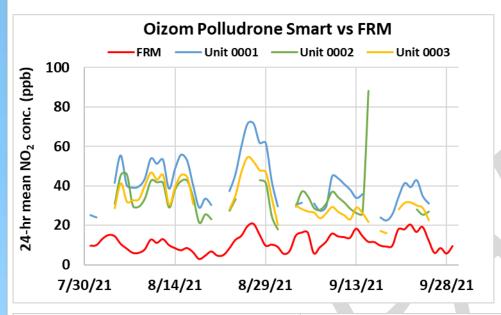

Polludrone Smart vs FRM (NO₂; 5-min mean)

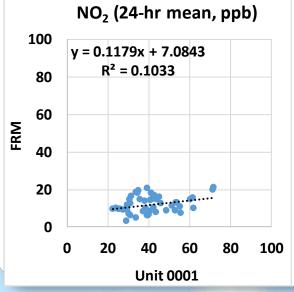

- The Polludrone Smart sensors did not correlate with the corresponding FRM NO₂ data (0.001 < R² < 0.04)
- Overall, the Polludrone Smart sensors overestimated the NO₂ concentrations as measured by the FRM instrument
- The Polludrone Smart sensors did not seem to track the diurnal NO₂ variations as recorded by the FRM instrument

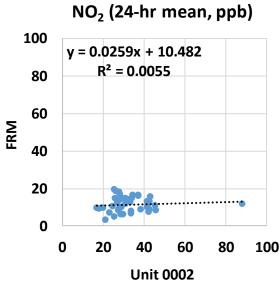


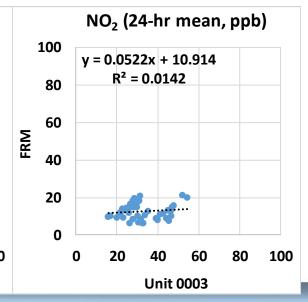



Polludrone Smart vs FRM (NO₂; 1-hr mean)


- The Polludrone Smart sensors did not correlate with the corresponding FRM NO₂ data (0.003 < R² < 0.04)
- Overall, the Polludrone Smart sensors overestimated the NO₂ concentrations as measured by the FRM instrument
- The Polludrone Smart sensors did not seem to track the diurnal NO₂ variations as recorded by the FRM instrument

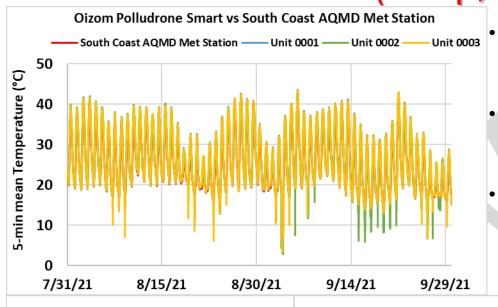




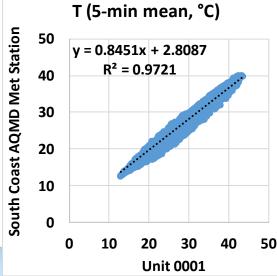

Polludrone Smart vs FRM (NO₂; 24-hr mean)

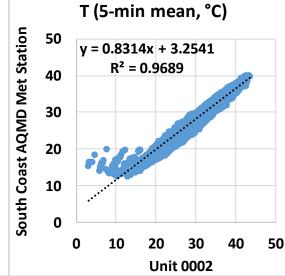
- The Polludrone Smart sensors showed no to very weak correlations with the corresponding FRM NO₂ data (0.005 < R² < 0.11)
- Overall, the Polludrone Smart sensors overestimated the NO₂ concentrations as measured by the FRM instrument
- The Polludrone Smart sensors did not seem to track the diurnal NO₂ variations as recorded by the FRM instrument

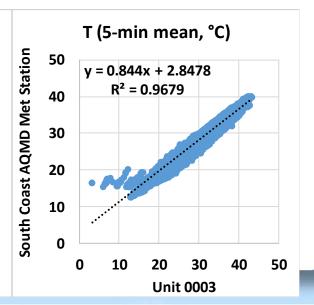
Summary: NO₂

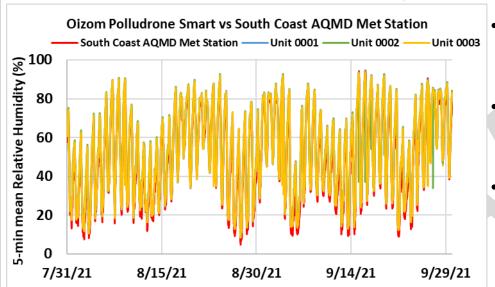

	Average of 3 Sensors, NO ₂		Polludrone Smart vs FRM, NO ₂							FRM NO ₂ (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM Average	FRM SD	Range during the field evaluation	
5-min	35.5	34.4	0.002 to 0.03	-0.06 to -0.01	12.0 to 14.5	20.0 to 28.7	20.6 to 29.1	33.6 to 60.0	11.4	8.3	1.3 to 58.0	
1-hr	35.6	29.4	0.003 to 0.04	-0.07 to -0.01	12.2 to 14.8	19.4 to 28.2	19.8 to 28.5	31.6 to 49.0	11.5	8.1	1.5 to 51.4	
24-hr	35.7	10.9	0.01 to 0.10	0.03 to 0.12	7.1 to 10.9	20.2 to 29.0	22.1 to 26.9	22.5 to 31.2	11.4	4.4	3.0 to 20.9	

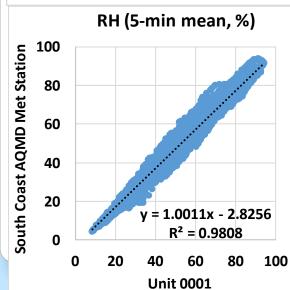
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

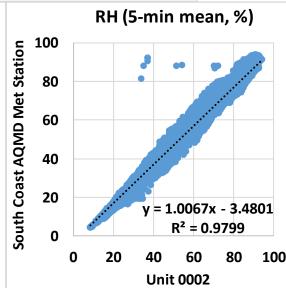

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

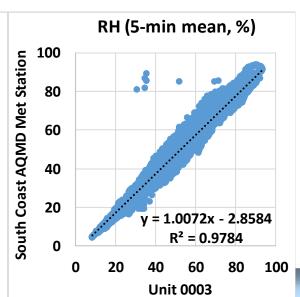

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.


Oizom Polludrone Smart vs South Coast AQMD Met Station (Temp; 5-min mean)


- The Polludrone Smart sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.97)
- Overall, the Polludrone Smart temperature measurements overestimated the corresponding South Coast AQMD Met Station data
- The Polludrone Smart sensors seemed to track the temperature diurnal variations as recorded by South Coast AQMD Met Station






Oizom Polludrone Smart vs South Coast AQMD Met Station (RH; 5-min mean)

- The Polludrone Smart sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Polludrone Smart RH measurements overestimated the corresponding South Coast AQMD Met Station data
- The Polludrone Smart sensors seemed to track the RH diurnal variations as recorded by South Coast AQMD Met Station

Discussion

- The average data recovery of three Polludrone Smart sensors for CO, ozone, NO, and NO₂ was ~98%.
- The absolute intra-model variability for CO, ozone, NO, and NO₂ was ~ 0.01 ppm, 3.3 ppb, 0.3 ppb, and 3.3 ppb, respectively.
- During the <u>entire</u> field deployment testing period:
 - ➤ CO sensors showed moderate to strong correlations with the FRM instrument (0.63 < R² < 0.72, 5-min mean) and underestimated the corresponding FRM data
 - ➤ Ozone sensors showed very weak correlations with the FEM instrument (0.14 < R² < 0.23, 5-min mean) and underestimated the corresponding FEM data
 - ➤ Nitric Oxide (NO) sensors showed very weak to weak correlations with the reference instrument (0.10 < R² < 0.36, 5-min mean) and overestimated the corresponding reference data
 - ➤ NO₂ sensors did not correlate with the FRM instrument (0.001 < R² < 0.04, 5-min mean) and overestimated the corresponding FRM data
 - ➤ Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station data (T: R² ~ 0.97 and RH: R² ~ 0.98) and overestimated T and RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- These results are still preliminary