Field Evaluation IQAir - AirVisual Outdoor

Background

- From 10/27/2022 to 12/27/2022, three IQAir AirVisual Outdoor sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-byside with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- IQAir AirVisual Outdoor (3 units tested):
 - Particle sensor: optical; non-FEM
 - ➢ Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³), T (°F), RH (%)
 - > Also measures: CO_2 (ppm)
 - ➤ Unit cost: \$289
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: ZFW8, JM83, Y5EF

- GRIMM EDM180 (reference instrument):
 - ➢ Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ➤ Cost: ~\$21,000
 - Time resolution: 1-min
- Met Station (T, RH, P, WS, WD):
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

FEM GRIMM

FEM T640

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~100%, ~98% and ~100% respectively for PM_{1.0}, PM_{2.5} and PM₁₀, respectively

IQAir AirVisual Outdoor; intra-model variability

- Absolute intra-model variability was ~0.24, ~0.39 and ~0.34 µg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~4.4%, ~4.0% and ~0.9% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for PM_{1.0} from GRIMM and T640 was ~96.7% and ~100%, respectively.
- Very strong correlations between the reference instruments for $PM_{1.0}$ measurements (R² ~0.97) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~96.7% and ~100%, respectively.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements (R² ~0.97) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM₁₀ from GRIMM and T640 was ~96.7% and ~100%, respectively.
- Very strong correlations between the reference instruments for PM_{10} measurements (R² ~0.97) were observed.

IQAir AirVisual Outdoor vs GRIMM (PM_{1.0}; 5-min mean)

/

IQAir AirVisual Outdoor vs FEM GRIMM (PM_{2.5}; 5-min mean)

- The IQAir AirVisual Outdoor sensors showed moderate correlations with the corresponding FEM GRIMM data (0.53 < R² < 0.60)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

IQAir AirVisual Outdoor vs GRIMM (PM₁₀; 5-min mean)

- The IQAir AirVisual Outdoor sensors showed weak to moderate correlations with the corresponding GRIMM data (0.38 < R² < 0.58)
- Overall, the IQAir AirVisual Outdoor sensors overestimated the PM₁₀ mass concentrations as measured by GRIMM
- The IQAir AirVisual Outdoor sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

IQAir AirVisual Outdoor vs GRIMM (PM_{1.0}; 1-hr mean)

- The IQAir AirVisual Outdoor sensors showed moderate correlations with the corresponding GRIMM data (0.52 < R² < 0.59)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

IQAir AirVisual Outdoor vs FEM GRIMM (PM_{2.5}; 1-hr mean)

IQAir AirVisual Outdoor vs GRIMM (PM₁₀; 1-hr mean)

- The IQAir AirVisual Outdoor sensors showed weak to moderate correlations with the corresponding GRIMM data $(0.40 < R^2 < 0.61)$
- Overall, the IQAir AirVisual Outdoor sensors overestimated the PM₁₀ mass concentrations as measured by GRIMM
- The IQAir AirVisual Outdoor sensors sometimes seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

250

200

100

50

0

0

50

 PM_{10} (1-hr mean, $\mu g/m^3$)

v = 1.4646x - 22.129

 $R^2 = 0.5908$

200

250

150

100

Unit Y5EF

IQAir AirVisual Outdoor vs GRIMM (PM_{1.0}; 24-hr mean)

- The IQAir AirVisual Outdoor sensors showed strong correlations with the corresponding GRIMM data (0.74 < R² < 0.81)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{1.0} daily variations as recorded by GRIMM

IQAir AirVisual Outdoor vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The IQAir AirVisual Outdoor sensors showed strong correlations with the corresponding FEM GRIMM data (0.82 < R² < 0.84)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{2.5} daily variations as recorded by FEM GRIMM

IQAir AirVisual Outdoor vs GRIMM (PM₁₀; 24-hr mean)

- The IQAir AirVisual Outdoor sensors showed moderate to strong correlations with the corresponding GRIMM data (0.50 < R² < 0.72)
- Overall, the IQAir AirVisual Outdoor sensors overestimated the PM₁₀ mass concentrations as measured by GRIMM
- The IQAir AirVisual Outdoor sensors sometimes seemed to track the PM₁₀ daily variations as recorded by GRIMM

IQAir AirVisual Outdoor vs T640 (PM_{1.0}; 5-min mean)

IQAir AirVisual Outdoor vs FEM T640 (PM_{2.5}; 5-min mean)

IQAir AirVisual Outdoor vs T640 (PM₁₀; 5-min mean)

- The IQAir AirVisual Outdoor sensors showed weak to moderate correlations with the corresponding T640 data (0.44 < R^2 < 0.61)
- Overall, the IQAir AirVisual Outdoor sensors overestimated the PM₁₀ mass concentrations as measured by T640
- The IQAir AirVisual Outdoor sensors seemed to track the PM₁₀ diurnal variations as recorded by

 $R^2 = 0.5982$

100

Unit Y5EF

200

IQAir AirVisual Outdoor vs T640 (PM_{1.0}; 1-hr mean)

- The IQAir AirVisual Outdoor sensors showed moderate correlations with the corresponding T640 data (0.62 < R² < 0.68)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

IQAir AirVisual Outdoor vs FEM T640 (PM_{2.5}; 1-hr mean)

- The IQAir AirVisual Outdoor sensors showed moderate correlations with the corresponding FEM T640 data (0.62 < R² < 0.69)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

IQAir AirVisual Outdoor vs T640 (PM₁₀; 1-hr mean)

- The IQAir AirVisual Outdoor sensors showed weak to moderate correlations with the corresponding T640 data (0.47 < R² < 0.66)
- Overall, the IQAir AirVisual Outdoor sensors overestimated the PM₁₀ mass concentrations as measured by T640
- The IQAir AirVisual Outdoor sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

IQAir AirVisual Outdoor vs T640 (PM_{1.0}; 24-hr mean)

- The IQAir AirVisual Outdoor sensors showed strong correlations with the corresponding T640 data ($0.80 < R^2 < 0.87$)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The IQAir AirVisual Outdoor sensors seemed to track the PM_{1.0} daily variations as recorded by T640

0

 PM_{10} (24-hr mean, $\mu g/m^3$)

IQAir AirVisual Outdoor vs FEM T640 (PM_{2.5}; 24-hr mean)

IQAir AirVisual Outdoor vs T640 (PM₁₀; 24-hr mean)

- The IQAir AirVisual Outdoor sensors showed moderate to strong correlations with the corresponding T640 data (0.56 < R² < 0.77)
- Overall, the IQAir AirVisual Outdoor sensors overestimated the PM₁₀ mass concentrations as measured by T640
- The IQAir AirVisual Outdoor sensors seemed to track the PM₁₀ daily variations as recorded by T640

IQAir AirVisual Outdoor vs South Coast AQMD Met Station (Temp; 5-min mean)

- The IQAir AirVisual Outdoor sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.90 < R² < 0.96)
- Overall, the IQAir AirVisual Outdoor sensors underestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The IQAir AirVisual Outdoor sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

IQAir AirVisual Outdoor vs South Coast AQMD Met Station (RH; 5-min mean)

- The IQAir AirVisual Outdoor sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.96 < R² < 0.99)
- Overall, the IQAir AirVisual Outdoor sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The IQAir AirVisual Outdoor sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Summary

	Average of 3 Sensors, PM _{1.0}		IQAir AirVisual Outdoor vs GRIMM & T640, PM _{1.0}						GRIMM & T640 (PM _{1.0} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	5.4	4.8	0.52 to 0.64	1.09 to 1.30	3.3 to 3.6	-4.9 to -4.1	4.5 to 5.6	5.9 to 7.3	9.8 to 10.1	7.2 to 7.9	0.2 to 101.2
1-hr	5.4	4.6	0.53 to 0.68	1.14 to 1.34	2.9 to 3.4	-4.9 to -4.1	4.4 to 5.5	5.7 to 7.2	9.8 to 10.1	7.0 to 7.7	0.3 to 39.9
24-hr	5.4	3.0	0.75 to 0.87	1.31 to 1.54	1.7 to 2.5	-5.0 to -4.1	4.1 to 5.0	4.5 to 5.7	9.8 to 10.2	4.8 to 5.0	0.9 to 23.1
	Average of 3 Sensors, PM _{2.5}		IQAir AirVisual Outdoor vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , µg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	9.6	7.9	0.54 to 0.65	0.75 to 0.95	4.5 to 5.8	-4.7 to -2.4	4.4 to 6.0	5.9 to 7.8	12.3 to 13.9	8.1 to 9.4	0.4 to 102.7
1-hr	9.6	7.6	0.54 to 0.68	0.77 to 0.98	4.1 to 5.7	-4.7 to -2.3	4.2 to 6.0	5.5 to 7.6	12.3 to 13.9	7.9 to 9.1	0.7 to 43.9
24-hr	9.5	5.0	0.82 to 0.88	0.88 to 1.12	2.6 to 4.5	-4.8 to -2.4	2.6 to 4.8	3.1 to 5.4	12.3 to 14.0	5.3 to 5.9	2.7 to 27.9
	Average of 3 Sensors, PM ₁₀		IQAir AirVisual Outdoor vs GRIMM & T640, PM ₁₀						GRIMM & T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	37.5	12.3	0.39 to 0.60	1.06 to 1.49	-23.9 to -4.8	1.9 to 5.8	10.5 to 14.4	14.4 to 19.0	32.3 to 35.2	21.3 to 23.1	0.5 to 247.7
1-hr	37.5	11.8	0.41 to 0.66	1.07 to 1.53	-25.1 to -5.8	1.9 to 5.8	9.9 to 13.8	13.3 to 17.9	32.3 to 35.2	20.5 to 22.0	0.9 to 217.9
24-hr	37.5	8.4	0.51 to 0.76	1.14 to 1.57	-26.7 to -8.0	1.9 to 5.9	6.6 to 10.1	8.3 to 12.1	32.2 to 35.2	13.9 to 14.9	3.7 to 72.0

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Discussion

- The three IQAir AirVisual Outdoor sensors' data recovery from all units was ~100%, ~98% and ~100% respectively for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- The absolute intra-model variability was ~0.24, ~0.39 and ~0.34 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- Reference instruments: very strong correlations between GRIMM and T640 for PM_{1.0} (R² ~0.97, 1-hr mean); very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~0.97, 1-hr mean) and very strong correlations between GRIMM and T640 for PM₁₀ (R² ~0.97, 1-hr mean) mass concentration measurements
- PM_{1.0} mass concentrations measured by the IQAir AirVisual Outdoor sensors showed moderate correlations with the corresponding GRIMM and T640 data (0.52 < R² < 0.68, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by the IQAir AirVisual Outdoor sensors showed moderate correlations with the corresponding FEM GRIMM and FEM T640 data (0.54 < R² < 0.69, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by the IQAir AirVisual Outdoor sensors showed weak to moderate correlations with the corresponding GRIMM and T640 data (0.40 < R² < 0.66; 1-hr mean). The sensors overestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary