## Field Evaluation Igienair Zaack AQI



Air Quality Sensor Performance Evaluation Center

### Background

- From 11/13/2020 to 01/08/2021, three Igienair Zaack AQI (hereinafter Zaack AQI) multisensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants
- Zaack AQI (3 units tested):
  - Gas Sensors: Electrochemical; non-FEM (Alphasense)
  - Particle Sensor Optical; non-FEM (Alphasense OPC R1)
  - > Each unit measures:  $O_3$  (ppb),  $NO_2$  (ppb), CO (ppb),  $PM_{1.0}$ ,  $PM_{2.5}$  and  $PM_{10}$  (µg/m<sup>3</sup>), T (°C), RH (%)
  - > Units also measure VOC (ppb) and  $CO_2(ppm)$
  - Unit cost: \$3000 + \$1199 Yearly calibration and maintenance contract
  - ➤ Time resolution: 30-sec
  - ➤ Units IDs: 1264, 1271, 1332



- South Coast AQMD Reference instruments:
  - ➢ O<sub>3</sub> instrument (FEM); cost: ~\$7,000
    - $\succ$  Time resolution; 1-min
  - CO instrument (FRM); cost: ~\$10,000
    - Time resolution; 1-min
  - NO<sub>2</sub> instrument (FRM); cost: ~\$11,000
    - Time resolution: 1-min
  - MetOne BAM (FEM PM<sub>2.5</sub> & FEM PM<sub>10</sub>); cost: ~\$20,000
    - Time resolution: 1-hr
  - Teledyne API T640 (FEM PM<sub>2.5</sub>); cost: \$21,000
    - Time resolution: 1-min
  - Met station (T, RH, P, WS, WD); cost: ~\$5,000
    - Time resolution: 1-min

# Ozone (O<sub>3</sub>) in Zaack AQI

### **Data validation & recovery**

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for ozone from all units was ~ 90%

### Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 3.9 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 12.9% for the ozone measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)



#### Zaack AQI vs FEM (Ozone; 5-min mean)



- Zaack AQI sensors did not correlate with the corresponding FEM ozone data ( $R^2 < 0.01$ )
- Overall, the Zaack AQI sensors overestimated the ozone concentration as measured by the FEM ozone instrument
- The Zaack AQI sensors did not seem to track the diurnal ozone variations as recorded by the FEM instrument



### Summary: Ozone

|       | Averaç<br>Sensors | ge of 3<br>, Ozone |               | Z                 | aack AQI vs F | FEM Ozone (ppb)           |                           |                            |             |        |                                      |
|-------|-------------------|--------------------|---------------|-------------------|---------------|---------------------------|---------------------------|----------------------------|-------------|--------|--------------------------------------|
|       | Average<br>(ppb)  | SD<br>(ppb)        | R²            | Slope             | Intercept     | MBE <sup>1</sup><br>(ppb) | MAE <sup>2</sup><br>(ppb) | RMSE <sup>3</sup><br>(ppb) | FEM Average | FEM SD | Range during the<br>field evaluation |
| 5-min | 29.2              | 19.2               | 0.005 to 0.01 | -0.06 to<br>-0.09 | 22.6 to 23.3  | 5.3 to 12.2               | 20.7 to<br>23.9           | 41.2 to 49.4               | 19.4        | 16.3   | 0.4 to 68.9                          |

<sup>1</sup> Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

<sup>2</sup> Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

<sup>3</sup> Root Mean Square Error (RMSE): another metric to calculate measurement errors.

## Nitrogen Dioxide (NO<sub>2</sub>) in Zaack AQI

### **Data validation & recovery**

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO<sub>2</sub> from Unit 1264, Unit 1271 and Unit 1332 was ~ 99%, 94% and 99% respectively.

### Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 0.67 ppb for the NO<sub>2</sub> measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.5% for the NO<sub>2</sub> measurements

(calculated as the absolute intra-model variability relative to the mean of the three sensor means)



### Zaack AQI vs FRM (NO<sub>2</sub>; 5-min mean)



- Zaack AQI sensors showed moderate correlations with the corresponding FRM NO<sub>2</sub> data (0.53 < R<sup>2</sup> < 0.58)</li>
- Overall, the Zaack AQI sensors underestimated the NO<sub>2</sub> concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal NO<sub>2</sub> variations as recorded by the FRM instrument



### Zaack AQI vs FRM (NO<sub>2</sub>; 1-hr mean)

20

40

Unit 1271

60



60

20

40

Unit 1264

0

80

- Zaack AQI sensors showed moderate correlations with the corresponding FRM data (0.55 < R<sup>2</sup> < 0.61)</li>
- Overall, the Zaack AQI sensors underestimated the NO<sub>2</sub> concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal NO<sub>2</sub> variations as recorded by the FRM instrument

20

40

Unit 1332

60

80

60

40

20

0

FRM

80

NO<sub>2</sub> (1-hr mean, ppb)

y = 1.1748x - 0.3329

 $R^2 = 0.5594$ 



### Zaack AQI vs FRM (NO<sub>2</sub>; 24-hr mean)



- Zaack AQI sensors showed strong correlations with the corresponding FRM data (0.74 < R<sup>2</sup> < 0.83)</li>
- Overall, the Zaack AQI sensors underestimated the NO<sub>2</sub> concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal NO<sub>2</sub> variations as recorded by the FRM instrument

11



### Summary: NO<sub>2</sub>

|       | -                                        |             |                |              |              |                           |                           |                            |             |        |                                   |
|-------|------------------------------------------|-------------|----------------|--------------|--------------|---------------------------|---------------------------|----------------------------|-------------|--------|-----------------------------------|
|       | Average of 3<br>Sensors, NO <sub>2</sub> |             |                | 2            | Zaack AQI vs | FRM NO <sub>2</sub> (ppb) |                           |                            |             |        |                                   |
|       | Average<br>(ppb)                         | SD<br>(ppb) | R <sup>2</sup> | Slope        | Intercept    | MBE <sup>1</sup><br>(ppb) | MAE <sup>2</sup><br>(ppb) | RMSE <sup>3</sup><br>(ppb) | FRM Average | FRM SD | Range during the field evaluation |
| 5-min | 18.5                                     | 9.0         | 0.53 to 0.58   | 0.89 to 1.24 | -0.2 to 5.8  | -2.8 to -4.0              | 7.2 to 8.0                | 15.0 to 15.2               | 21.3        | 13.1   | 1.0 to 76.3                       |
| 1-hr  | 18.6                                     | 8.6         | 0.56 to 0.61   | 0.96 to 1.31 | -1.3 to 4.4  | -3.0 to -4.2              | 6.7 to 7.9                | 8.8 to 9.3                 | 21.8        | 12.7   | 1.3 to 62.1                       |
| 24-hr | 18.4                                     | 4.8         | 0.74 to 0.82   | 1.29 to 1.45 | -4.7 to -2.3 | -2.6 to -3.8              | 3.7 to 4.7                | 4.6 to 5.5                 | 21.5        | 7.4    | 7.4 to 34.3                       |

<sup>1</sup> Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

<sup>2</sup> Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

<sup>3</sup> Root Mean Square Error (RMSE): another metric to calculate measurement errors.

## Carbon Monoxide (CO) in Zaack AQI

### **Data validation & recovery**

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for CO from Unit 1264, Unit 1271 and Unit 1332 was ~ 87%, 64% and 83% respectively.

### Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 12.1 ppb for the CO measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.8% for the CO measurements

(calculated as the absolute intra-model variability relative to the mean of the three sensor means)



### Zaack AQI vs FRM (CO; 5-min mean)



### Zaack AQI vs FRM (CO; 1-hr mean)



- Zaack AQI sensors showed very strong correlations with the corresponding FRM CO data (0.90 < R<sup>2</sup> < 0.92)</li>
- Overall, the Zaack AQI sensors underestimated the CO concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal CO variations as recorded by the FRM instrument

16



### Zaack AQI vs FRM (CO; 24-hr mean)



- Zaack AQI sensors showed strong to very strong correlations with the corresponding FRM CO data (0.79 < R<sup>2</sup> < 0.92)</li>
- Overall, the Zaack AQI sensors underestimated the CO concentration as measured by the FRM instrument
- The Zaack AQI sensors seemed to track the diurnal CO variations as recorded by the FRM instrument

17



### Summary: CO

|       | Average of 3<br>Sensors CO |             |                | Zaack AQI vs | FRM CO (ppb)   |                           |                           |                            |             |        |                                      |
|-------|----------------------------|-------------|----------------|--------------|----------------|---------------------------|---------------------------|----------------------------|-------------|--------|--------------------------------------|
|       | Average<br>(ppb)           | SD<br>(ppb) | R <sup>2</sup> | Slope        | Intercept      | MBE <sup>1</sup><br>(ppb) | MAE <sup>2</sup><br>(ppb) | RMSE <sup>3</sup><br>(ppb) | FRM Average | FRM SD | Range during the<br>field evaluation |
| 5-min | 275.3                      | 207.7       | 0.84 to 0.87   | 1.22 to 1.64 | 122.3 to 259.9 | -275.7 to<br>-329.1       | 276.0 to<br>329.6         | 525.6 to<br>568.5          | 476.3       | 331.8  | 115.5 to 2312.9                      |
| 1-hr  | 285.9                      | 198.7       | 0.90 to 0.92   | 1.25 to 1.69 | 108.9 to 252.1 | -283.2 to<br>-339.6       | 283.3 to<br>339.6         | 324.5 to<br>356.2          | 490.4       | 328.4  | 120.3 to 1846.7                      |
| 24-hr | 281.5                      | 98.1        | 0.79 to 0.92   | 1.03 to 1.71 | 64.6 to 256.7  | -242.3 to<br>-268.8       | 242.3 to 262.8            | 258.2 to<br>279.4          | 481.1       | 178.1  | 158.5 to 870.9                       |

<sup>1</sup> Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

<sup>2</sup> Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

<sup>3</sup> Root Mean Square Error (RMSE): another metric to calculate measurement errors.

## PM in Zaack AQI

### **Data validation & recovery**

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1264 and Unit 1271 was ~ 100% for all PM fractions. Unit 1332 data was not
  included for further analysis due to the malfunction of the PM sensor.

### Zaack AQI; Intra-model variability

- Absolute intra-model variability was ~ 0.08, 1.3 and 6.9  $\mu$ g/m<sup>3</sup> for the PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 1.4%, 8.5% and 10.8% for the  $PM_{1.0}$ ,  $PM_{2.5}$  and  $PM_{10}$ , respectively. (calculated as the absolute intra-model variability relative to the mean of the three sensor means)



### Reference Instruments: PM<sub>2.5</sub> FEM BAM & FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid datapoints were eliminated from the data-set)
- Data recovery for PM<sub>2.5</sub> from FEM BAM and FEM T640 is ~97% and 100%, respectively.
- Very strong correlations between FEM BAM and FEM T640 for PM<sub>2.5</sub> measurements (R<sup>2</sup> ~ 0.90)



### Reference Instruments: PM<sub>10</sub> FEM BAM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid datapoints were eliminated from the data-set)
- Data recovery for PM<sub>10</sub> from FEM BAM and T640 is ~99% and 100%, respectively.
- Strong correlations between FEM BAM and T640 for PM<sub>10</sub> measurements (R<sup>2</sup> ~ 0.88)



#### Zaack AQI vs T640 (PM<sub>1.0</sub>; 5-min mean)



#### Zaack AQI vs FEM T640 (PM<sub>2.5</sub>; 5-min mean)



- Zaack AQI sensors showed strong correlations with the corresponding FEM T640 data (0.79 < R<sup>2</sup> < 0.82)</li>
- Overall, the Zaack AQI sensors underestimated the PM<sub>2.5</sub> mass concentration as measured by the FEM T640
- The Zaack AQI sensors seemed to track the diurnal PM<sub>2.5</sub> variations as recorded by the FEM T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.



#### Zaack AQI vs T640 (PM<sub>10</sub>; 5-min mean)



#### Zaack AQI vs T640 (PM<sub>1.0</sub>; 1-hr mean)



#### Zaack AQI vs FEM T640 (PM<sub>2.5</sub>; 1-hr mean)



#### Zaack AQI vs T640 (PM<sub>10</sub>; 1-hr mean)



#### Zaack AQI vs T640 (PM<sub>1.0</sub>; 24-hr mean)



- Zaack AQI sensors showed strong correlations with the corresponding T640 data (0.77 < R<sup>2</sup> < 0.87)</li>
- Overall, the Zaack AQI sensors underestimated the PM<sub>1.0</sub> mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM<sub>1.0</sub> variations as recorded by the T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.



#### Zaack AQI vs FEM T640 (PM<sub>2.5</sub>; 24-hr mean)



- Zaack AQI sensors showed strong correlations with the corresponding FEM T640 data ( $0.83 < R^2 < 0.88$ )
- Overall, the Zaack AQI sensors underestimated the PM<sub>25</sub> mass concentration as measured by the FEM T640
- The Zaack AQI sensors seemed to track the diurnal PM<sub>25</sub> variations as recorded by the FFM T640

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM

 $R^2 = 0.8385$ 

30

40

20

#### Zaack AQI vs T640 (PM<sub>10</sub>; 24-hr mean)



- Zaack AQI sensors showed moderate correlations with the corresponding T640 data (0.66 < R<sup>2</sup> < 0.70)</li>
- Overall, the Zaack AQI sensors overestimated the PM<sub>10</sub> mass concentration as measured by the T640
- The Zaack AQI sensors seemed to track the diurnal PM<sub>10</sub> variations as recorded by the T640

Note: Unit 1332 is excluded from data analysis due to a malfunctioning PM sensor.



#### Zaack AQI vs FEM BAM (PM<sub>2.5</sub>; 1-hr mean)



#### Zaack AQI vs FEM BAM (PM<sub>10</sub>; 1-hr mean)



#### Zaack AQI vs FEM BAM (PM<sub>2.5</sub>; 24-hr mean)



- Zaack AQI sensors showed strong correlations with the corresponding FEM BAM data (0.80 < R<sup>2</sup> < 0.85)</li>
- Overall, the Zaack AQI sensors overestimated the PM<sub>2.5</sub> mass concentration as measured by the FEM BAM
- The Zaack AQI sensors seemed to track the diurnal PM<sub>2.5</sub> variations as recorded by the FEM BAM

Note: Unit 1332 was excluded from data analysis due to a malfunctioning PM sensor.



#### Zaack AQI vs FEM BAM (PM<sub>10</sub>; 24-hr mean)



### Summary: PM

|       | Average of 3<br>Sensors, PM <sub>1.0</sub> |                            | Zaack AQI vs T640, PM <sub>1.0</sub> |                                           |               |                                                               |                                          |                                           | T640 (PM <sub>1.0</sub> , μg/m³) |                                                          |                                      |  |  |
|-------|--------------------------------------------|----------------------------|--------------------------------------|-------------------------------------------|---------------|---------------------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------------------|--------------------------------------|--|--|
|       | Average<br>(µg/m <sup>3</sup> )            | SD<br>(µg/m³)              | R <sup>2</sup>                       | Slope                                     | Intercept     | MBE <sup>1</sup><br>(µg/m <sup>3</sup> )                      | MAE <sup>2</sup><br>(µg/m <sup>3</sup> ) | RMSE <sup>3</sup><br>(µg/m <sup>3</sup> ) | Ref. Average                     | Ref. SD                                                  | Range during the<br>field evaluation |  |  |
| 5-min | 5.9                                        | 7.4                        | 0.78 to 0.83                         | 1.44 to 1.48                              | 3.3 to 3.8    | -6.2 to -6.4                                                  | 6.3 to 6.5                               | 14.1 to 14.7                              | 12.3                             | 12.1                                                     | 0.4 to 217.0                         |  |  |
| 1-hr  | 5.9                                        | 7.3                        | 0.78 to 0.83                         | 1.44 to 1.48                              | 3.3 to 3.8    | -6.2 to -6.4                                                  | 6.3 to 6.4                               | 8.7 to 9.1                                | 12.3                             | 11.9                                                     | 0.4 to 63.2                          |  |  |
| 24-hr | 6.0                                        | 5.0                        | 0.78 to 0.87                         | 1.44 to 1.54                              | 3.0 to 3.8    | -5.9 to -6.0                                                  | 6.2 to 6.4                               | 4.6 to 5.5                                | 12.3                             | 8.1                                                      | 1.5 to 31.2                          |  |  |
|       | Average of 3<br>Sensors PM                 |                            |                                      | Zaa                                       | ck AQI vs BAM | FEM BAM and FEM T640 (PM <sub>2.5</sub> , µg/m <sup>3</sup> ) |                                          |                                           |                                  |                                                          |                                      |  |  |
|       | Average<br>(µg/m <sup>3</sup> )            | SD<br>(µg/m <sup>3</sup> ) | R <sup>2</sup>                       | Slope                                     | Intercept     | MBE <sup>1</sup><br>(µg/m <sup>3</sup> )                      | MAE <sup>2</sup><br>(µg/m <sup>3</sup> ) | RMSE <sup>3</sup><br>(µg/m <sup>3</sup> ) | Ref. Average                     | Ref. SD                                                  | Range during the field evaluation    |  |  |
| 5-min | 15.1                                       | 13.2                       | 0.80 to 0.82                         | 0.87 to 1.04                              | 1.7 to 1.8    | -2.2 to 0.4                                                   | 3.8 to 4.2                               | 9.9 to 10.6                               | 16.1                             | 13.9                                                     | 0.8 to 239.7                         |  |  |
| 1-hr  | 15.1                                       | 12.9                       | 0.73 to 0.83                         | 0.71 to 1.04                              | 1.6 to 2.3    | -2.2 to 2.6                                                   | 3.7 to 5.0                               | 6.0 to 7.7                                | 14.1 to 16.0                     | 11.6 to<br>13.6                                          | 0 to 165.1                           |  |  |
| 24-hr | 15.1                                       | 8.9                        | 0.80 to 0.87                         | 0.71 to 1.09                              | 0.9 to 2.4    | -2.0 to 2.5                                                   | 2.4 to 3.6                               | 3.5 to 4.9                                | 14.1 to 16.0                     | 7.3 to 9.4                                               | 3.4 to 39.7                          |  |  |
|       | Average of 3<br>Sensors, PM <sub>40</sub>  |                            |                                      | Zaack AQI vs BAM & T640, PM <sub>10</sub> |               |                                                               |                                          |                                           |                                  | FEM BAM and T640 (PM <sub>10</sub> , μg/m <sup>3</sup> ) |                                      |  |  |
|       | Average<br>(µg/m <sup>3</sup> )            | SD<br>(µg/m <sup>3</sup> ) | R <sup>2</sup>                       | Slope                                     | Intercept     | MBE <sup>1</sup><br>(µg/m <sup>3</sup> )                      | MAE <sup>2</sup><br>(µg/m <sup>3</sup> ) | RMSE <sup>3</sup><br>(µg/m <sup>3</sup> ) | Ref. Average                     | Ref. SD                                                  | Range during the field evaluation    |  |  |
| 5-min | 64.4                                       | 48.7                       | 0.69 to 0.71                         | 0.47 to 0.60                              | 14.1 to 15.2  | 8.8 to 22.8                                                   | 14.4 to<br>23.9                          | 40.7 to 65.0                              | 48.5                             | 30.6                                                     | 1.3 to 547.2                         |  |  |
| 1-hr  | 64.4                                       | 46.0                       | 0.70 to 0.86                         | 0.47 to 0.69                              | 7.0 to 14.6   | 9.0 to 24.5                                                   | 13.2 to<br>25.0                          | 20.1 to 38.7                              | 46.8 to 48.5                     | 29.1 to<br>30.6                                          | 1 to 349                             |  |  |
| 24-hr | 64.4                                       | 26.8                       | 0.66 to 0.85                         | 0.53 to 0.66                              | 8.5 to 10.9   | 9.2 to 24.6                                                   | 11.6 to<br>24.6                          | 15.4 to 29.1                              | 46.8 to 48.5                     | 18.9 to<br>30.6                                          | 5.4 to 96.5                          |  |  |

<sup>1</sup> Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

<sup>2</sup> Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to

the reference instruments.

<sup>3</sup> Root Mean Square Error (RMSE): another metric to calculate measurement errors.

#### Zaack AQI vs South Coast AQMD Met Station (Temp; 5-min mean)



- Zaack AQI sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.94 < R<sup>2</sup> < 0.96)</li>
- Overall, the Zaack AQI sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Zaack AQI sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

37



#### Zaack AQI vs South Coast AQMD Met Station (RH; 5-min mean)



- Zaack AQI sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R<sup>2</sup> ~ 0.98)
- Overall, the Zaack AQI sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Zaack AQI sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

0

0

20

40

60

Unit 1332

80

100

RH (5-min mean, %)

y = 1.5502x - 13.146

 $R^2 = 0.9782$ 

### Discussion

- The three Zaack AQI sensors' average data recovery for ozone, NO<sub>2</sub> and CO was ~ 90%, 97% and 78%; respectively.
   Data recovery from Unit 1264 and Unit 1271 was ~ 100% for all PM fractions.
- The absolute intra-model variability was 3.9 ppb, 0.67 ppb and 12.1 ppb for ozone, NO<sub>2</sub> and CO<sub>2</sub> respectively. Absolute intra-model variability for Unit 1264 and Unit 1271 was ~ 0.08, 1.3 and 6.9 μg/m<sup>3</sup> for the PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively.
- The reference instruments (FEM BAM and FEM T640) showed very strong and strong correlations with each other for PM<sub>2.5</sub> and PM<sub>10</sub> mass concentration measurements (R<sup>2</sup> ~ 0.90 and R<sup>2</sup> ~ 0.88, 1-hr mean), respectively.
- During the <u>entire</u> field deployment testing period:
  - Ozone sensors did not correlate with the FEM instrument (R<sup>2</sup> < 0.01, 5-min mean) and overestimated the corresponding FEM data</p>
  - NO<sub>2</sub> sensors showed moderate correlations with the FRM instrument (0.53 < R<sup>2</sup> < 0.58, 5-min mean) and underestimated the corresponding FRM data
  - CO sensors showed strong correlations with the FRM instrument (0.84 < R<sup>2</sup> < 0.88, 5-min mean) and underestimated the corresponding FRM data
  - The sensors (Unit 1264 and Unit 1271) showed strong correlations with the corresponding PM<sub>1.0</sub> data (0.77 < R<sup>2</sup> < 0.83, 1-hr mean); strong correlations with the corresponding PM<sub>2.5</sub> data (0.72 < R<sup>2</sup> < 0.83, 1-hr mean) and moderate to strong correlations with the corresponding PM<sub>10</sub> data (0.69 < R<sup>2</sup> < 0.86, 1-hr mean). Overall, the sensors underestimated the corresponding PM<sub>1.0</sub> and PM<sub>2.5</sub> data and overestimated the corresponding PM<sub>10</sub> data.
  - Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station data (T: R<sup>2</sup> ~ 0.95 and RH: R<sup>2</sup> ~ 0.98) and overestimated the T data and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.