Field Evaluation Foobot Sensor

Background

 From 07/14/2016 to 09/15/2016, three Foobot PM Sensors were deployed in Rubidoux and ran side-by-side with a Federal Equivalent Method (FEM) instrument measuring the same pollutants.

• Foobot Sensor (3 units tested):

- Includes Particle sensor (optical; non-FEM)
- Each unit reports: Fine particles (µg/m³), total VOC, CO (ppm), CO₂ (ppm), Temp and RH; only evaluated for PM_{2.5} during this study
- ➤ Unit cost: ~\$200
- ➤ Time resolution: 5-min
- Units IDs: Foobot 1, Foobot 2, Foobot 3

- MetOne BAM (reference method):
 - Beta-attenuation monitors (FEM)
 - Measures PM_{2.5} & PM₁₀ mass (µg/m³)
 - ➢Unit cost: ~\$20,000
 - ➤Time resolution: 1-hr

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for $PM_{2.5}$ from Foobot 1, Foobot 2 and Foobot 3 was ~99 %.

Foobot sensors; intra-model variability

• Modest measurement variations were observed between the three Foobot devices tested for $PM_{2.5}$ mass concentrations in $\mu g/m^3$.

Foobot Sensor vs FEM BAM (PM_{2.5} Mass; 1-hr mean)

- Foobot PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.54).
- The three sensors seem to track well the diurnal variations as recorded by the FEM BAM instrument.
- Foobot devices moderately overestimate the FEM measurement data.
- Data recovery for FEM BAM PM_{2.5} was 96.3%

Foobot Sensor vs FEM BAM (PM_{2.5} Mass; 24-hr mean)

- Foobot PM_{2.5} mass measurements correlate well with the corresponding FEM BAM data (R² > 0.56)
- The three sensors track well the diurnal variations as recorded by the FEM BAM instrument.
- Foobot devices moderately overestimate the FEM measurement data.

- Overall, the three Foobot PM Sensors were reliable (data recovery was between ~99 % across the three sensor devices) and were characterized by modest intra-model measurement variability.
- The Foobot sensors demonstrated a modest correlation (R² ~ 0.55) with the FEM instrument and moderately overestimated the FEM (BAM) measurement data.
- The sensors tracked well the PM_{2.5} diurnal variations as recoded by the FEM instrument.
- It should be noted that no sensor calibration had been performed by SCAQMD Staff prior to the beginning of the field testing.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors over different / more extreme environmental conditions.
- <u>All results are still preliminary</u>