Field Evaluation Elitech Temtop P20

- From 08/26/2020 to 10/21/2020, three Elitech Temtop P20 (hereinafter Temtop P20) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>Temtop P20 (3 units tested)</u>:
 - Particle sensor: optical; non-FEM (PMJG200, Temtop)
 - Each unit reports: PM_{2.5} (µg/m³), Temperature and Relative Humidity
 - ➤ Unit cost: ~\$70
 - ➤ Time resolution: 5-min
 - > Units IDs: Unit 1, Unit 2 and Unit 3

- MetOne BAM (reference instrument):
 - Beta-attenuation monitor (FEM PM_{2.5} & PM₁₀)
 - Measures PM_{2.5} & PM₁₀ (µg/m³)
 - ➤ Unit cost: ~\$20,000
 - ➤ Time resolution: 1-hr
- Teledyne API T640 (reference instrument):
 - > Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{2.5}$ & PM_{10} (µg/m³)
 - ➤ Unit cost: ~\$21,000
 - ➤ Time resolution: 1-min
- Met station (T, RH, P, WS, WD)
 - Unit cost: ~\$5,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1, Unit 2 and Unit 3 was ~ 90%, ~ 100% and ~ 100%, respectively, for PM_{2.5} measurements

Temtop P20; intra-model variability

- Absolute intra-model variability was ~ 1.43 µg/m³ for PM_{2.5} measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 5.2% for PM_{2.5} measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM BAM & FEM T640

- Data recovery for PM_{2.5} from FEM BAM and FEM T640 was ~ 92% and 94%, respectively.
- Strong correlations between the FEM BAM and FEM T640 for $PM_{2.5}$ measurements ($R^2 \sim 0.87$) were observed.

Temtop P20 vs FEM T640 (PM_{2.5}; 5-min mean)

Temtop P20 vs FEM T640 (PM_{2.5}; 1-hr mean)

- The Temtop P20 sensors showed moderate to very strong correlations with the corresponding FEM T640 data (0.68 < R² < 0.91)
- Overall, the Temtop P20 sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Temtop P20 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

Temtop P20 vs FEM T640 (PM_{25} ; 24-hr mean)

Unit 1

- The Temtop P20 sensors showed strong to very strong correlations with the corresponding FEM T640 data (0.86 < R² <
- Overall, the Temtop P20 sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Temtop P20 sensors seemed to track the PM₂₅ diurnal variations as recorded by FEM

 $PM_{2.5}$ (24-hr mean, $\mu g/m^3$)

y = 0.792x + 4.4413

 $R^2 = 0.9174$

80

20

0

0

20

40

Temtop P20 vs FEM BAM (PM_{2.5}; 1-hr mean)

Temtop P20 vs FEM BAM (PM_{2.5}; 24-hr mean)

Summary: PM_{2.5}

	Average of 3 Sensors, PM _{2.5}		Temtop P20 vs Reference Instruments, PM _{2.5}						FEM BAM and FEM T640 (PM _{2.5} , µg/m ³)		
Temtop P20	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	27.4	24.2	0.42 to 0.87	0.41 to 0.77	4.9 to 13.9	-0.7 to 2.6	3.8 to 6.1	5.3 to 14.4	22.9	13.0	4.4 to 94.6
1-hr	27.4	22.3	0.69 to 0.91	0.50 to 0.80	4.3 to 9.0	-0.7 to 5.1	3.6 to 8.7	4.5 to 14.6	22.8 to 23.0	12.8 to 13.9	2 to 97
24-hr	27.7	18.5	0.86 to 0.96	0.54 to 0.87	3.4 to 6.9	-0.5 to 6.9	2.9 to 7.5	3.4 to 10.9	22.7 to 23.0	10.0 to 11.3	11.7 to 61.9

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Elitech Temtop P20 vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Temtop P20 temperature measurements showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Temtop P20 temperature measurements underestimated the corresponding South Coast AQMD Met Station data
- The Temtop P20 sensors seemed to track well the temperature diurnal variations as recorded by South Coast AQMD Met Station

v = 1.112x - 2.5909

 $R^2 = 0.9809$

T (5-min mean, F)

Unit 3

100 120

Elitech Temtop P20 vs South Coast AQMD Met Station (RH; 5-min mean)

- The Temtop P20 RH measurements showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Temtop P20 RH measurements underestimated the corresponding South Coast AQMD Met Station data
- The Temtop P20 sensors seemed to track well the RH diurnal variations as recorded by South Coast AQMD Met Station

 $R^2 = 0.9809$

80

60

Unit 3

100 120

Discussion

- The three Temtop P20 sensors' data recovery from units Unit 1, Unit 2 and Unit 3 was ~ 90%, ~ 100% and ~ 100% for PM_{2.5} measurements
- The absolute intra-model variability was ~ 1.43 μ g/m³ for PM_{2.5} measurements
- PM_{2.5} mass concentrations measured by Temtop P20 sensors showed moderate to very strong correlations with the corresponding FEM T640 data (0.68 < R² < 0.91, 1-hr mean) and strong correlations with the corresponding FEM BAM data (0.78 < R² < 0.90, 1-hr mean). The sensors overestimated PM_{2.5} mass concentrations as measured by FEM T640 and FEM BAM.
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- <u>All results are still preliminary</u>