Field Evaluation Davis Instruments - Airlink

Background

- From 04/02/2021 to 06/01/2021, three **Davis Instruments Airlink (hereinafter Airlink)** sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>Airlink (3 units tested)</u>:
 - Particle sensor: optical; non-FEM (PMSA003, Plantower)
 - Each unit reports: PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³), Temperature (°F), RH (%)
 - ➤ Unit cost: \$179
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: 023B, 023F, 0206

- GRIMM (reference instrument):
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ➤ Cost: ~\$21,000
 - ➤ Time resolution: 1-min
- Met Station (T, RH, P, WS, WD):
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~ 100% for all PM measurements

Airlink; intra-model variability

- Absolute intra-model variability was ~ 0.35, 0.37 and 0.75 µg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.4%, 2.5% and 3.8% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for $PM_{1,0}$ from GRIMM and T640 was ~ 100%.
- Strong correlations between the reference instruments for $PM_{1.0}$ measurements ($R^2 \sim 0.90$) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for $PM_{2.5}$ from FEM GRIMM and FEM T640 was ~ 100%.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements ($R^2 \sim 0.91$) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM_{10} from GRIMM and T640 was ~ 100%.
- Strong correlations between the reference instruments for PM_{10} measurements ($R^2 \sim 0.89$) were observed.

Airlink vs GRIMM (PM_{1.0}; 5-min mean)

/

Airlink vs FEM GRIMM (PM_{2.5}; 5-min mean)

Airlink vs GRIMM (PM₁₀; 5-min mean)

Airlink vs GRIMM (PM_{1.0}; 1-hr mean)

10

Airlink vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The Airlink sensors showed strong correlations with the corresponding FEM GRIMM data (0.80 < R² < 0.82)
- Overall, the Airlink sensors overestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Airlink sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

Airlink vs GRIMM (PM₁₀; 1-hr mean)

- The Airlink sensors showed very weak correlations with the corresponding GRIMM data (0.26 < R² < 0.29)
- Overall, the Airlink sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The Airlink sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

Airlink vs GRIMM (PM_{1.0}; 24-hr mean)

Airlink vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Airlink vs GRIMM (PM₁₀; 24-hr mean)

Airlink vs T640 (PM_{1.0}; 5-min mean)

Airlink vs FEM T640 (PM_{2.5}; 5-min mean)

17

Airlink vs T640 (PM₁₀; 5-min mean)

Airlink vs T640 (PM_{1.0}; 1-hr mean)

Airlink vs FEM T640 (PM_{2.5}; 1-hr mean)

20

Airlink vs T640 (PM₁₀; 1-hr mean)

Airlink vs T640 (PM_{1.0}; 24-hr mean)

Airlink vs FEM T640 (PM_{2.5}; 24-hr mean)

- The Airlink sensors showed strong correlations with the corresponding FEM T640 data (0.73 < R² < 0.75)
- Overall, the Airlink sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Airlink sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

Airlink vs T640 (PM₁₀; 24-hr mean)

24

	Average of 3 Sensors, PM _{1.0}		Airlink vs GRIMM & T640, PM _{1.0}						GRIMM & T640 (PM _{1.0} , μg/m ³)		
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	10.3	7.3	0.85 to 0.88	0.73 to 0.79	3.0 to 4.3	-1.6 to - 0.4	2.2 to 2.8	2.7 to 3.4	11.2 to 11.6	5.9	0.4 to 139.9
1-hr	10.3	7.2	0.88 to 0.89	0.74 to 0.78	3.1 to 4.2	-1.6 to - 0.4	2.2 to 2.7	2.5 to 3.2	11.2 to 11.6	5.7 to 5.8	0.6 to 59.2
24-hr	10.1	5.4	0.91 to 0.93	0.70 to 0.77	3.5 to 4.3	-1.7 to - 0.5	1.7 to 2.1	2.0 to 2.5	11.1 to 11.4	4.0 to 4.2	2.2 to 21.5
	Average of 3 Sensors, PM _{2.5}		Airlink vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	14.8	11.5	0.74 to 0.81	0.50 to 0.57	6.4 to 8.9	-2.4 to 0.8	4.9 to 5.9	6.1 to 7.0	14.3 to 16.6	6.6 to 7.4	1.3 to 195.3
1-hr	14.8	11.3	0.76 to 0.82	0.50 to 0.57	6.4 to 8.8	-2.4 to 0.8	4.8 to 5.8	6.0 to 6.7	14.3 to 16.6	6.4 to 7.2	1.7 to 82.6
24-hr	14.5	8.3	0.74 to 0.81	0.48 to 0.56	6.9 to 8.9	-2.5 to 0.6	3.9 to 4.6	4.6 to 5.3	14.2 to 16.5	4.5 to 5.3	3.1 to 28.0
	Average of 3 Sensors, PM ₁₀		Airlink vs GRIMM & T640, PM ₁₀						GRIMM and T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	19.5	14.2	0.25 to 0.31	0.47 to 0.68	19.1 to 32.2	-25.9 to -8.6	12.1 to 26.0	16.2 to 36.2	28.8 to 44.4	13.4 to 17.4	2.1 to 351.7
1-hr	19.5	13.8	0.26 to 0.33	0.46 to 0.68	19.2 to 32.2	-25.9 to -8.6	11.9 to 26.0	15.5 to 29.7	28.8 to 44.4	12.4 to 16.5	3.0 to 159.5
24-hr	19.2	10.0	0.23 to 0.33	0.41 to 0.68	20.2 to 32.0	-26.0 to -8.7	9.7 to 26.0	12.9 to 28.0	28.6 to 44.1	8.6 to 12.0	5.8 to 65.7

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Airlink vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Airlink sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.92 < R² < 0.93)
- Overall, the Airlink sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Airlink sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Airlink vs South Coast AQMD Met Station (RH; 5-min mean)

- The Airlink sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.94)
- Overall, the Airlink sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Airlink sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three Airlink sensors' data recovery from all units was ~ 100% for all PM measurements
- The absolute intra-model variability was ~ 0.35, 0.37 and 0.75 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- Strong correlations between GRIMM and T640 for PM_{1.0} (R² ~ 0.90, 1-hr mean); very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~ 0.91, 1-hr mean) and strong correlations between GRIMM and T640 for PM₁₀ (R² ~ 0.89, 1-hr mean) mass concentration measurements
- PM_{1.0} mass concentrations measured by the Airlink sensors showed strong correlations with the corresponding GRIMM and T640 data (0.88 < R² < 0.90, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by the Airlink sensors showed strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.76 < R² < 0.82, 1-hr mean). The sensors overestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and underestimated PM_{2.5} mass concentrations as measured by FEM T640
- PM₁₀ mass concentrations measured by the Airlink sensors showed very weak to weak correlations with the corresponding GRIMM and T640 data (0.26 < R² < 0.33; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary