Field Evaluation AS-LUNG Portable

Background

- From 10/06/2017 to 12/14/2017, three AS-LUNG Portable sensor were deployed at our (SCAQMD) Rubidoux station and ran side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>AS-LUNG Portable Sensor [3 units tested]:</u>
 - Particle sensor (optical; non-FEM)
 - ➢ PM sensor: Plantower PMS3003
 - Each sensor reports: PM₁, PM_{2.5} and PM₁₀ mass concentration (µg/m³)
 - \succ Unit also carries a CO₂ (ppm) sensor
 - Time resolution:15 seconds
 - ➤ Unit cost: ~\$999
 - ➤ IDs: 0009, 0014, 0015

- <u>MetOne BAM (*reference method*)</u>: → Beta-attenuation monitors (FEM PM_{2.5}, PM₁₀)
 - Measures PM_{2.5} & PM₁₀ mass (µg/m³)
 - ≻Unit cost: ~\$20,000
 - ➤ Time resolution: 1-hr
- <u>GRIMM (reference method)</u>:
 - Optical Particle Counter (FEM PM_{2.5})
 - Uses proprietary algorithms to calculate total PM_{1.0}, PM_{2.5}, PM₁₀ mass from particle number measurements
 - ➤ Unit cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM₁, PM_{2.5} and PM₁₀ mass concentrations from all AS-LUNG Portable sensors was ~82%, ~85% and ~87%, respectively.

AS-LUNG Portable; intra-model variability

 Very low intra-model variabilities (6%-8%) were observed between the different AS-LUNG Portable sensors for PM₁, PM_{2.5} and PM₁₀ mass concentrations (μg/m³).

Equivalent Methods: GRIMM vs BAM

- PM mass concentrations measured the equivalent methods correlate well for 1-hr mean concentrations (R² > 0.81)
- Overall, PM mass concentrations measured by FEM BAM are slightly higher than the PM mass concentrations measured by GRIMM

AS-LUNG Portable vs GRIMM (PM₁; 5-min mean)

AS-LUNG Portable vs FEM GRIMM (PM_{2.5}; 5-min mean)

AS-LUNG Portable vs GRIMM (PM₁₀; 5-min mean)

- AS-LUNG Portable PM₁₀ mass measurements do not correlate with the corresponding GRIMM data (0.11 < R² < 0.14)
- Overall, the AS-LUNG Portable sensors overestimate PM₁₀ mass concentrations measured by GRIMM
- The AS-LUNG Portable sensors do not track well the PM₁₀ diurnal variation recorded by GRIMM

AS-LUNG Portable vs GRIMM (PM₁; 1-hr mean)

- AS-LUNG Portable PM₁ mass measurements correlate well with the corresponding GRIMM data (R² > 0.88)
- Overall, the AS-LUNG Portable sensors slightly overestimate PM₁ mass concentrations measured by GRIMM
- The AS-LUNG sensors track well the PM₁ diurnal variation recorded by GRIMM

AS-LUNG Portable vs GRIMM (PM₁; 24-hr mean)

- AS-LUNG Portable PM₁ mass measurements correlate well with the corresponding GRIMM data (R² > 0.93)
- Overall, the AS-LUNG Portable sensors slightly overestimate PM₁ mass concentrations measured by GRIMM
- The AS-LUNG portable sensors track well the PM₁ diurnal variation recorded by GRIMM

AS-LUNG Portable vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- AS-LUNG Portable PM_{2.5} mass measurements correlate well with the corresponding FEM GRIMM data (R² > 0.90)
- Overall, the AS-LUNG Portable sensors overestimate PM_{2.5} mass concentrations measured by FEM GRIMM
- The AS-LUNG Portable sensors track well the PM_{2.5} diurnal variation recorded by FEM GRIMM

AS-LUNG Portable vs FEM BAM (PM_{2.5}; 1-hr mean) **AS-LUNG Portable vs FEM BAM** AS-LUNG Portable PM_{2.5} mass FEM BAM — Unit 0009 — Unit 0014 — Unit 0015 measurements show good correlations 80 conc. with the corresponding FEM BAM data $(R^2 > 0.82)$ 1-hr mean PM_{2.5} 60 (µg/m³) Overall, the AS-LUNG Portable sensors overestimate PM_{2.5} mass concentrations 40 measured by FEM BAM The AS-LUNG sensors track well the 20 PM₂₅ diurnal variation recorded by FEM 0 BAM 11/11/17 11/14/17 11/17/17 11/20/17 11/23/17 PM_{25} (1-hr mean, $\mu g/m^3$) PM_{25} (1-hr mean, $\mu g/m^3$) PM_{25} (1-hr mean, $\mu g/m^3$) 100 100 100 y = 0.6575x + 4.2334y = 0.6239x + 3.7312y = 0.6382x + 4.0911 $R^2 = 0.8278$ $R^2 = 0.8251$ $R^2 = 0.8306$ 75 75 75 FEM BAM FEM BAM 50 50 50 25 25 25 n 25 50 75 100 25 75 50 100 n 75 25 50 100 0 Unit 0009 Unit 0014 Unit 0015

FEM BAM

AS-LUNG Portable vs FEM BAM (PM_{2.5}; 24-hr mean)

Unit 0014

Unit 0009

13

Unit 0015

AS-LUNG Portable vs FEM BAM (PM₁₀; 1-hr mean)

Discussion

- The three AS-LUNG Portable sensors had a data recovery of > 82% with low intra-model variability (6% to 8%)
- The equivalent methods (GRIMM and BAM) correlate well with each other for both PM_{2.5} (R² > 0.81) and PM₁₀ (R² > 0.83) mass concentration measurements (1-hr mean)
- PM₁ mass concentration measurements measured by AS-LUNG Portable correlate well with the corresponding GRIMM values (R² > 0.88, 1-hr mean) and overestimate PM₁ mass concentration measurements measured by GRIMM
- PM_{2.5} mass concentration measurements measured by AS-LUNG Portable correlate well with the corresponding FEM GRIMM and FEM BAM (0.79 < R² <0.83), 1-hr mean) and overestimate PM_{2.5} mass concentration measurements measured by FEM GRIMM and FEM BAM
- PM₁₀ mass concentration measurements measured by AS-LUNG Portable do not correlate with the corresponding FEM BAM (R² < 0.11, 1-hr mean) and GRIMM values (R² < 0.11,1-hr mean) and overestimate PM₁₀ mass concentration measurements measured by the FEM BAM and GRIMM
- No sensor calibration was performed by SCAQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary