# Field Evaluation APT MINIMA





- From 10/30/2020 to 12/29/2020, three Applied Particle Technology MINIMA (hereinafter APT MINIMA) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>APT MINIMA (3 units tested)</u>:
  - Particle sensor: optical; non-FEM
  - > Each unit reports:  $PM_{1.0}$ ,  $PM_{2.5}$  and  $PM_{10}$  (µg/m<sup>3</sup>)
  - Unit cost: \$995 (hardware only)
  - ➤ Time resolution: 15-sec
  - ➤ Units IDs: BW28, BW29, BW31



- MetOne BAM (reference instrument):
  - Beta-attenuation monitor (FEM PM<sub>2.5</sub> & PM<sub>10</sub>)
  - Measures PM<sub>2.5</sub> & PM<sub>10</sub> (µg/m<sup>3</sup>)
  - ➤ Unit cost: ~\$20,000
  - Time resolution: 1-hr
- <u>Teledyne API T640 (reference instrument)</u>:
  - Optical particle counter (FEM PM<sub>2.5</sub>)
  - $\succ$  Measures PM<sub>2.5</sub> & PM<sub>10</sub> (µg/m<sup>3</sup>)
  - ➤ Unit cost: ~\$21,000
  - Time resolution: 1-min

### **Data validation & recovery**

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was ~ 100% for all PM measurements

### APT MINIMA; intra-model variability

- Absolute intra-model variability was ~ 0.24, 0.33 and 0.37 µg/m<sup>3</sup> for PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.5%, 3.3% and 3.2 % for PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)



#### Reference Instruments: PM<sub>2.5</sub> FEM BAM and FEM T640

- Data recovery for PM<sub>2.5</sub> from FEM BAM and FEM T640 was ~ 98% and ~ 100%, respectively.
- Very strong correlations between the reference instruments for PM<sub>2.5</sub> measurements (R<sup>2</sup> ~ 0.90) were observed.



#### Reference Instruments: PM<sub>10</sub> FEM BAM and T640

- Data recovery for  $PM_{10}$  from FEM BAM and T640 was ~100%.
- Strong correlations between the reference instruments for  $PM_{10}$  measurements ( $R^2 \sim 0.88$ ) were observed.



#### APT MINIMA vs T640 (PM<sub>1.0</sub>; 5-min mean)



#### APT MINIMA vs FEM T640 (PM<sub>2.5</sub>; 5-min mean)



#### APT MINIMA vs T640 (PM<sub>10</sub>; 5-min mean)



#### APT MINIMA vs T640 (PM<sub>1.0</sub>; 1-hr mean)



#### APT MINIMA vs FEM T640 (PM<sub>2.5</sub>; 1-hr mean)



10

#### APT MINIMA vs T640 (PM<sub>10</sub>; 1-hr mean)



#### APT MINIMA vs T640 (PM<sub>1.0</sub>; 24-hr mean)



- APT MINIMA sensors showed very strong correlations with the corresponding T640 data (0.94 < R<sup>2</sup> < 0.96)</li>
- Overall, the APT MINIMA sensors underestimated the  $PM_{1.0}$  mass concentrations as measured by T640
- The APT MINIMA sensors seemed to track the PM<sub>1.0</sub> diurnal variations as recorded by T640



#### APT MINIMA vs FEM T640 (PM<sub>2.5</sub>; 24-hr mean)



- APT MINIMA sensors showed very strong correlations with the corresponding FEM T640 data ( $R^2 \sim 0.94$ )
- Overall, the APT MINIMA sensors underestimated the PM<sub>2.5</sub> mass concentrations as measured by **FEM T640**
- The APT MINIMA sensors seemed to track the PM<sub>2.5</sub> diurnal variations as recorded by FEM T640



#### APT MINIMA vs T640 (PM<sub>10</sub>; 24-hr mean)

Unit BW29



Unit BW28

- APT MINIMA sensors showed moderate correlations with the corresponding T640 data (R<sup>2</sup>
- Overall, the APT MINIMA sensors underestimated the PM<sub>10</sub> mass concentrations as measured by
- The APT MINIMA sensors seemed to track the PM<sub>10</sub> diurnal variations as recorded by T640

80

60

40

20

0

0

20

40

Unit BW31

 $PM_{10}$  (24-hr mean,  $\mu g/m^3$ )

v = 1.48x + 33.384

 $R^2 = 0.5297$ 

80

100

60

14

#### APT MINIMA vs FEM BAM (PM<sub>2.5</sub>; 1-hr mean)



#### APT MINIMA vs FEM BAM (PM<sub>10</sub>; 1-hr mean)



- APT MINIMA sensors showed very weak correlations with the corresponding FEM BAM data (R<sup>2</sup> ~ 0.23)
- Overall, the APT MINIMA sensors underestimated the PM<sub>10</sub> mass concentrations measured by FEM BAM
- The APT MINIMA sensors did not seem to track the PM<sub>10</sub> diurnal variations as recorded by FEM BAM



#### APT MINIMA vs FEM BAM (PM<sub>2.5</sub>; 24-hr mean)



#### APT MINIMA vs FEM BAM (PM<sub>10</sub>; 24-hr mean)





|       | Average of 3<br>Sensors, PM <sub>1.0</sub> |                            | APT MINIMA vs T640, PM <sub>1.0</sub>               |              |              |                                          |                                          |                                           | T640 (PM <sub>1.0</sub> , μg/m <sup>3</sup> )               |              |                                   |
|-------|--------------------------------------------|----------------------------|-----------------------------------------------------|--------------|--------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------|-----------------------------------|
|       | Average<br>(µg/m³)                         | SD<br>(µg/m <sup>3</sup> ) | R <sup>2</sup>                                      | Slope        | Intercept    | MBE <sup>1</sup><br>(µg/m <sup>3</sup> ) | MAE <sup>2</sup><br>(µg/m <sup>3</sup> ) | RMSE <sup>3</sup><br>(µg/m <sup>3</sup> ) | Ref. Average                                                | Ref. SD      | Range during the field evaluation |
| 5-min | 6.8                                        | 7.6                        | 0.84 to 0.89                                        | 1.35 to 1.47 | 2.4 to 2.7   | -5.6 to -5.0                             | 5.0 to 5.6                               | 6.8 to 7.5                                | 12.0                                                        | 11.3         | 0.4 to 217                        |
| 1-hr  | 6.8                                        | 7.4                        | 0.87 to 0.91                                        | 1.38 to 1.47 | 2.3 to 2.5   | -5.6 to -5.0                             | 5.0 to 5.6                               | 6.6 to 7.3                                | 12.0                                                        | 11.1         | 0.4 to 147                        |
| 24-hr | 6.7                                        | 5.1                        | 0.94 to 0.96                                        | 1.35 to 1.46 | 2.3 to 2.6   | -5.6 to -5.0                             | 5.0 to 5.5                               | 5.5 to 6.2                                | 11.9                                                        | 7.4          | 1.5 to 30.9                       |
|       | Average of 3<br>Sensors, PM <sub>2.5</sub> |                            | APT MINIMA vs FEM BAM & FEM T640, PM <sub>2.5</sub> |              |              |                                          |                                          |                                           | FEM BAM & FEM T640 (PM <sub>2.5</sub> , μg/m <sup>3</sup> ) |              |                                   |
|       | Average<br>(µg/m³)                         | SD<br>(µg/m <sup>3</sup> ) | R <sup>2</sup>                                      | Slope        | Intercept    | MBE <sup>1</sup><br>(μg/m <sup>3</sup> ) | MAE <sup>2</sup><br>(µg/m <sup>3</sup> ) | RMSE <sup>3</sup><br>(µg/m <sup>3</sup> ) | Ref. Average                                                | Ref. SD      | Range during the field evaluation |
| 5-min | 10.1                                       | 11.9                       | 0.86 to 0.89                                        | 1.01 to 1.06 | 5.6 to 5.8   | -6.4 to -5.6                             | 5.8 to 6.5                               | 7.1 to 7.9                                | 16.1                                                        | 13.1         | 1.1 to 239                        |
| 1-hr  | 10.1                                       | 11.7                       | 0.81 to 0.90                                        | 0.84 to 1.07 | 5.4 to 5.7   | -6.4 to -3.6                             | 5.0 to 6.4                               | 5.0 to 7.6                                | 14.2 to 16.1                                                | 11.1 to 12.8 | 0 to 165                          |
| 24-hr | 10.0                                       | 8.0                        | 0.91 to 0.94                                        | 0.80 to 1.08 | 5.4 to 5.9   | -6.4 to -3.7                             | 4.0 to 6.4                               | 4.0 to 6.8                                | 14.0 to 16.0                                                | 7.0 to 8.7   | 3.4 to 39.7                       |
|       | Average of 3<br>Sensors, PM <sub>10</sub>  |                            | APT MINIMA vs FEM BAM & T640, PM <sub>10</sub>      |              |              |                                          |                                          |                                           | FEM BAM and T640 (PM <sub>10</sub> , μg/m <sup>3</sup> )    |              |                                   |
|       | Average<br>(µg/m³)                         | SD<br>(µg/m³)              | R <sup>2</sup>                                      | Slope        | Intercept    | MBE <sup>1</sup><br>(µg/m³)              | MAE <sup>2</sup><br>(µg/m <sup>3</sup> ) | RMSE <sup>3</sup><br>(µg/m <sup>3</sup> ) | Ref. Average                                                | Ref. SD      | Range during the field evaluation |
| 5-min | 11.7                                       | 13.7                       | ~0.37                                               | 1.40 to 1.49 | 34.5 to 34.7 | -40.3 to -39.4                           | 39.4 to 40.3                             | 47.4 to 48.3                              | 51.5                                                        | 32.6         | 2.4 to 749                        |
| 1-hr  | 11.7                                       | 13.5                       | 0.23 to 0.42                                        | 1.08 to 1.50 | 34.3 to 36.9 | -40.3 to -37.8                           | 37.8 to 40.3                             | 37.8 to 46.8                              | 49.9 to 51.5                                                | 30.2 to 31.2 | 1.0 to 349                        |
| 24-hr | 11.6                                       | 9.2                        | 0.40 to 0.53                                        | 1.17 to 1.58 | 32.9 to 35.6 | -40.3 to -37.6                           | 37.6 to 40.3                             | 37.6 to 42.5                              | 49.6 to 51.2                                                | 17.7 to 19.4 | 5.4 to 96                         |

<sup>1</sup> Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

<sup>2</sup> Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

<sup>3</sup> Root Mean Square Error (RMSE): another metric to calculate measurement errors.

## Discussion

- The three **APT MINIMA** sensors' data recovery from all units was ~ 100% for all PM measurements
- The absolute intra-model variability was ~ 0.24, 0.33 and 0.37  $\mu$ g/m<sup>3</sup> for PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively
- Very strong correlations between FEM BAM and FEM T640 for PM<sub>2.5</sub> (R<sup>2</sup> ~ 0.90, 1-hr mean) and strong correlations between FEM BAM and T640 for PM<sub>10</sub> (R<sup>2</sup> ~ 0.88, 1-hr mean) mass concentration measurements
- PM<sub>1.0</sub> mass concentrations measured by APT MINIMA sensors showed strong to very strong correlations with the corresponding T640 data (0.87 < R<sup>2</sup> < 0.92, 1-hr mean). The sensors underestimated PM<sub>1.0</sub> mass concentrations as measured by T640
- PM<sub>2.5</sub> mass concentrations measured by APT MINIMA sensors showed strong to very strong correlations with the corresponding FEM T640 and FEM BAM data (0.80 < R<sup>2</sup> < 0.91, 1-hr mean). The sensors underestimated PM<sub>2.5</sub> mass concentrations as measured by FEM T640 and FEM BAM
- PM<sub>10</sub> mass concentrations measured by APT MINIMA sensors showed very weak to weak correlations with the corresponding T640 and FEM BAM data (0.23 < R<sup>2</sup> < 0.42; 1-hr mean) and underestimated PM<sub>10</sub> mass concentrations as measured by T640 and FEM BAM
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- <u>All results are still preliminary</u>