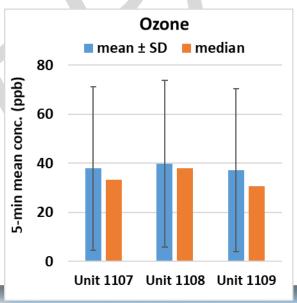
Field Evaluation Airly

AQ-SPEC
Air Quality Sensor Performance Evaluation Center

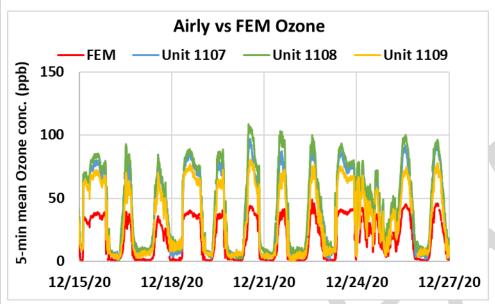
Background

- From 11/14/2020 to 01/09/2021, three **Airly** multi-pollutant sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run sideby-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants
- Airly (3 units tested):
 - ➤ Gas Sensors: (Electrochemical; non-FEM)
 - Particle Sensor: Light Scattering (non-FEM; PMS5003 by NO_X instrument (FRM); cost: ~\$11,000
 - ➤ Each unit measures: O₃ (ppb), NO₂ (ppb), PM_{1.0}, PM_{2.5} and PM_{10} (µg/m³), T (°C), RH (%).
 - ➤ Units also measure pressure
 - ➤ Unit cost: \$1000
 - > Time resolution: 5-min
 - ➤ Units IDs: 1107, 1108, 1109

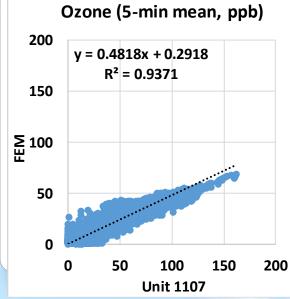
- South Coast AQMD Reference instruments:
 - > O₃ instrument (FEM); cost: ~\$7,000
 - - Time resolution: 1-min
 - MetOne BAM (FEM PM_{2.5} & FEM PM₁₀); cost: ~\$20,000
 - > Time resolution: 1-hr
 - Teledyne API T640 (FEM PM_{2.5}); cost: \$21,000
 - > Time resolution: 1-min
 - ➤ Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - > Time resolution: 1-min

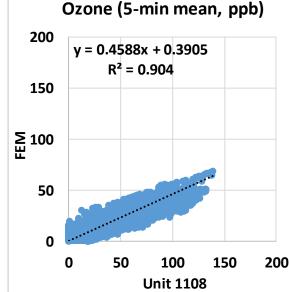

Ozone (O₃) in Airly

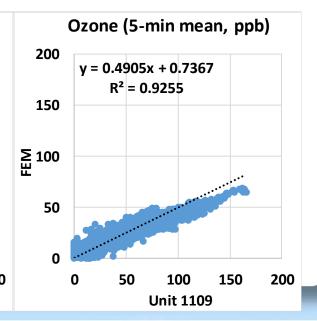
Data validation & recovery

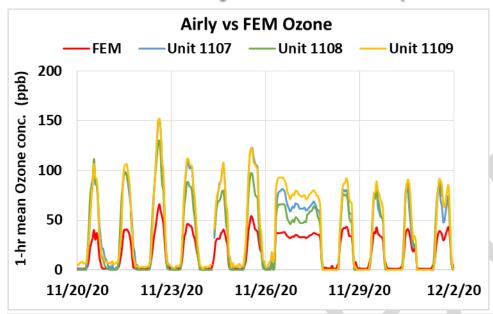

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for ozone from Unit 1107, Unit 1108 and Unit 1109 was ~ 98%, 82% and 98%, respectively.

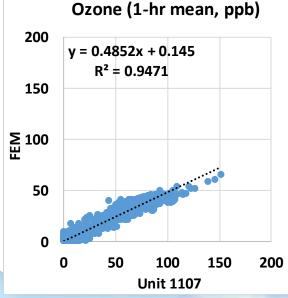
Airly; Intra-model variability

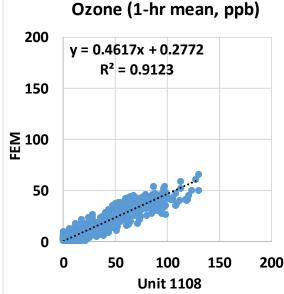

- Absolute intra-model variability was ~ 1.3 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 3.4% for the ozone measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

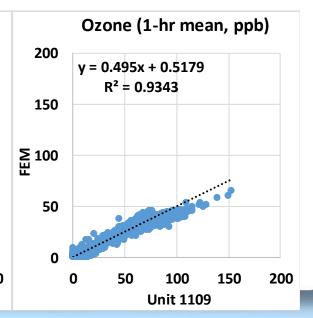


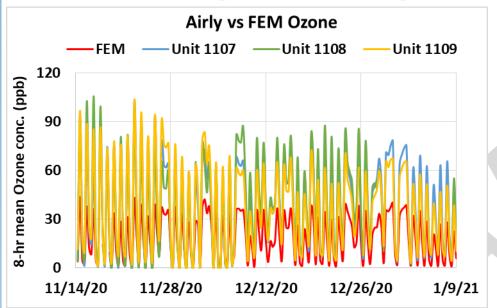

Airly vs FEM (Ozone; 5-min mean)

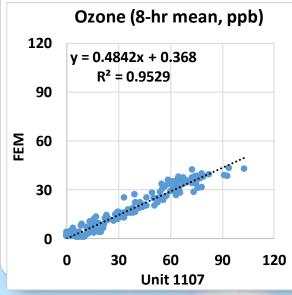

- Airly sensors showed very strong correlations with the corresponding FEM ozone data (0.90 < R² < 0.94)
- Overall, the Airly sensors overestimated the ozone concentration as measured by the FEM ozone instrument
- The Airly sensors seemed to track the diurnal ozone variations as recorded by the FEM instrument

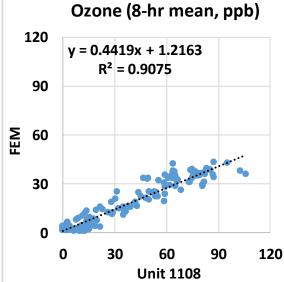


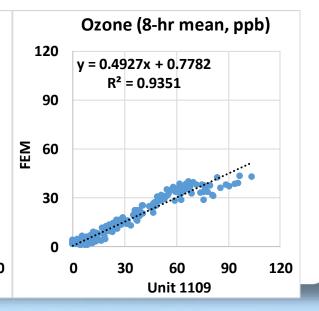



Airly vs FEM (Ozone; 1-hr mean)


- Airly sensors showed very strong correlations with the corresponding FEM ozone data (0.91 < R² < 0.95)
- Overall, the Airly sensors overestimated the ozone concentration as measured by the FEM instrument
- The Airly sensors seemed to track the diurnal ozone variations as recorded by the FEM instrument






Airly vs FEM (Ozone; 8-hr mean)

- Airly sensors showed very strong correlations with the corresponding FEM ozone data (0.90 < R² < 0.96)
- Overall, the Airly sensors overestimated the ozone concentration as measured by the FEM instrument
- The Airly sensors seemed to track the diurnal ozone variations as recorded by the FEM instrument

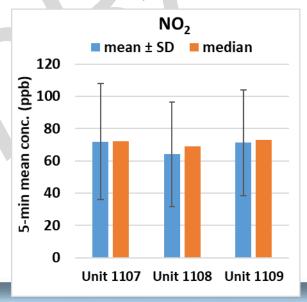
Summary: Ozone

	Averag Sensors		Airly vs FEM, Ozone						FEM Ozone (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FEM Average	FEM SD	Range during the field evaluation
5-min	38.3	33.0	0.90 to 0.94	0.46 to 0.49	0.29 to 0.74	18.8 to 22.0	19.3 to 22.9	40.5 to 43.0	19.5	16.3	0.4 to 68.9
1-hr	38.3	32.6	0.91 to 0.95	0.46 to 0.50	0.15 to 0.52	18.0 to 21.0	18.4 to 21.8	24.4 to 28.1	18.6	16.1	0.9 to 65.9
8-hr	38.1	28.6	0.91 to 0.95	0.44 to 0.49	0.37 to 1.22	17.6 to 20.5	17.9 to 20.8	22.7 to 24.2	18.6	13.4	1.3 to 43.6

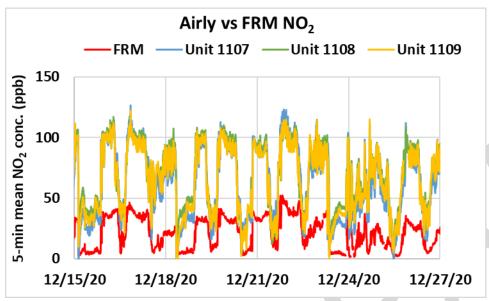
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

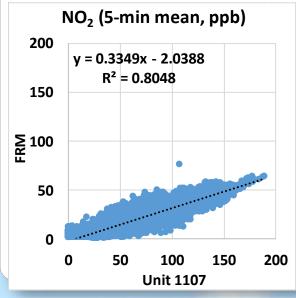
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

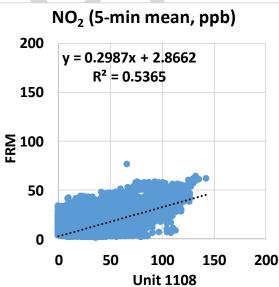

Nitrogen Dioxide (NO₂) in Airly

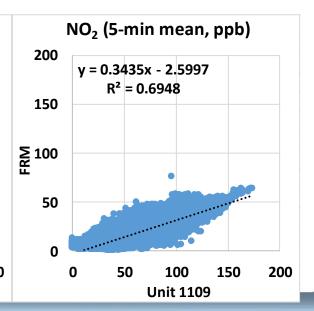
Data validation & recovery

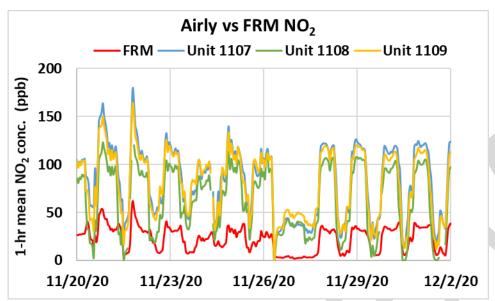

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ from Unit 1107, Unit 1108 and Unit 1109 was ~ 98%, 82% and 98% respectively.

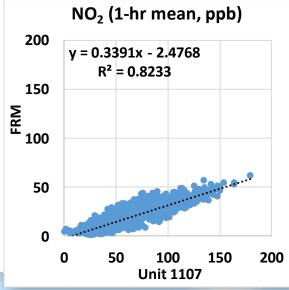
Airly; Intra-model variability

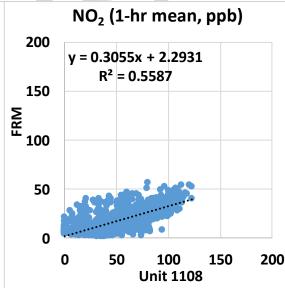

- Absolute intra-model variability was ~ 4.3 ppb for the NO₂ measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was $\sim 6.3\%$ for the NO₂ measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

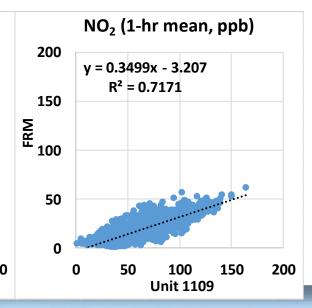


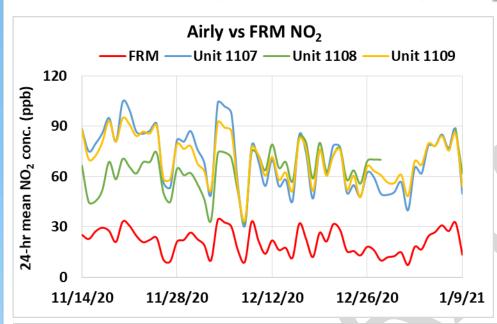

Airly vs FRM (NO₂; 5-min mean)

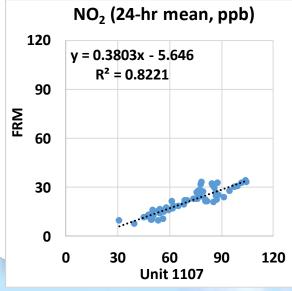

- Airly sensors showed moderate to strong correlations with the corresponding FRM NO₂ data (0.53 < R² < 0.81)
- Overall, the Airly sensors overestimated the NO₂ concentration as measured by the FRM instrument
- The Airly sensors seemed to track the diurnal NO₂ variations as recorded by the FRM instrument

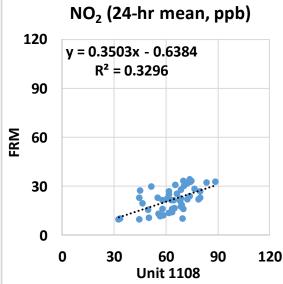


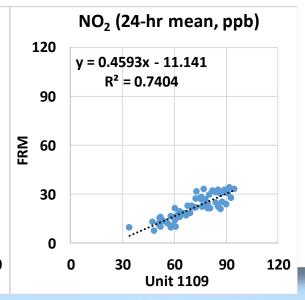



Airly vs FRM (NO₂; 1-hr mean)


- Airly sensors showed moderate to strong correlations with the corresponding FRM data (0.55 < R² < 0.83)
- Overall, the Airly sensors overestimated the NO₂ concentration as measured by the FRM instrument
- The Airly sensors seemed to track the diurnal NO₂ variations as recorded by the FRM instrument






Airly vs FRM (NO₂; 24-hr mean)

- Airly sensors showed weak to strong correlations with the corresponding FRM data (0.32 < R² < 0.83)
- Overall, the Airly sensors overestimated the NO₂ concentration as measured by the FRM instrument
- The Airly sensors seemed to track the diurnal NO₂ variations as recorded by the FRM instrument

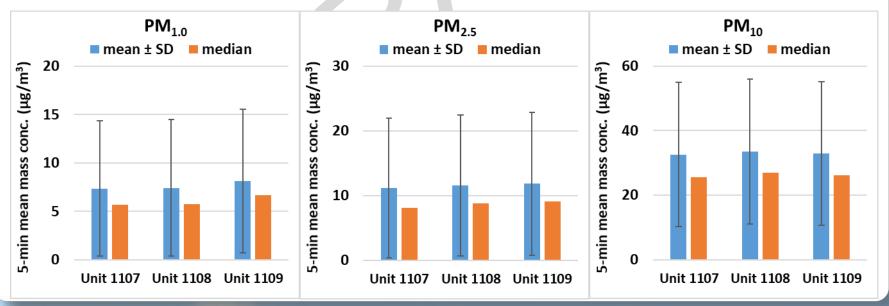
Summary: NO₂

	Average of 3 Sensors, NO ₂		Airly vs FRM, NO ₂						FRM NO ₂ (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM Average	FRM SD	Range during the field evaluation
5-min	68.6	33.2	0.54 to 0.80	0.30 to 0.34	-2.6 to 2.9	40.9 to 48.1	42.4 to 48.1	70.4 to 86.3	21.2	13.1	1.0 to 76.3
1-hr	68.6	32.3	0.56 to 0.82	0.31 to 0.35	-3.2 to 2.3	42.5 to 49.3	43.6 to 49.3	48.5 to 54.5	21.6	12.8	1.3 to 62.1
24-hr	68.4	14.6	0.33 to 0.82	0.35 to 0.46	-11.1 to -0.64	42.1 to 49.5	42.1 to 49.5	43.3 to 50.8	21.3	7.5	7.4 to 34.3

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

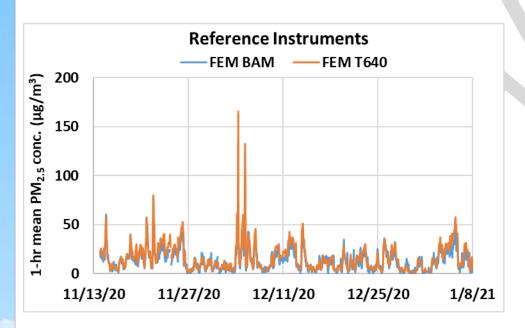
² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

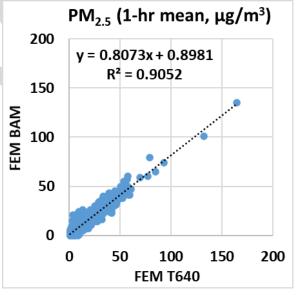
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.



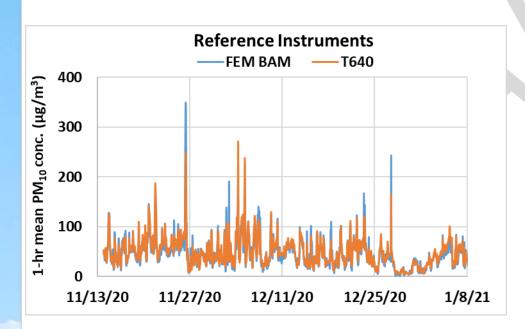
Data validation & recovery

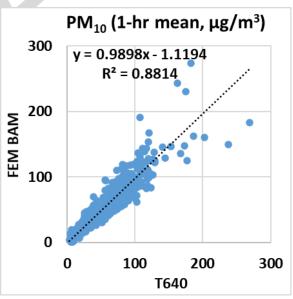
- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1107, Unit 1108 and Unit 1109 was ~ 100% for all PM fractions.

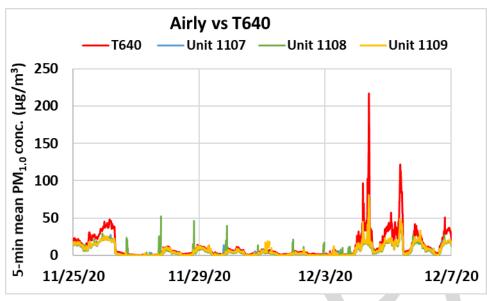

Airly; Intra-model variability


- Absolute intra-model variability was \sim 0.36, 0.29 and 0.41 μ g/m³ for the PM_{1.0,} PM_{2.5} and PM₁₀, respectively. (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was $\sim 4.7\%$, 2.5% and 1.3% for the PM_{1.0}, PM_{2.5} and PM₁₀, respectively. (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

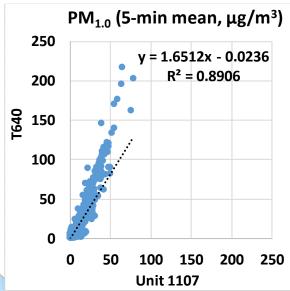
Reference Instruments: PM_{2.5} FEM BAM & FEM T640

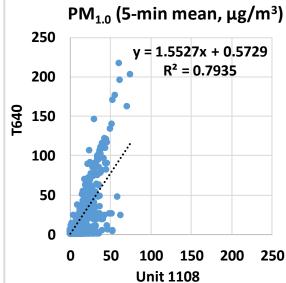

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from FEM BAM and FEM T640 is ~97% and 100%, respectively
- Very strong correlations between FEM BAM and FEM T640 for PM_{2.5} measurements (R² ~ 0.91)

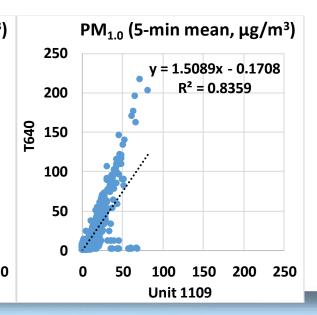


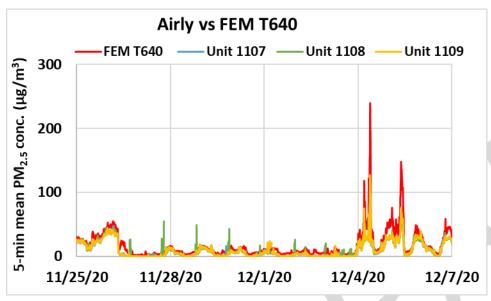

Reference Instruments: PM₁₀ FEM BAM & T640

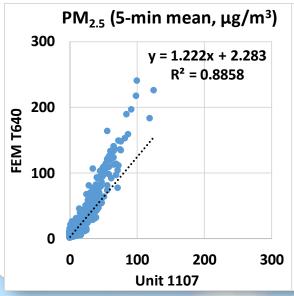
- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM₁₀ from FEM BAM and T640 is ~99% and 100%, respectively
- Strong correlations between FEM BAM and T640 for PM₁₀ measurements (R² ~ 0.88)

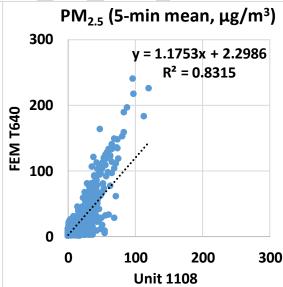


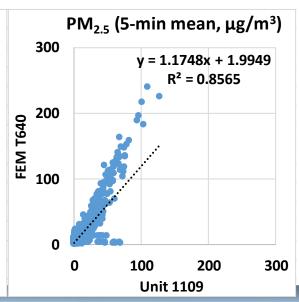


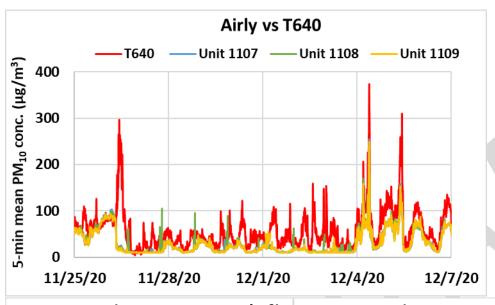

Airly vs T640 ($PM_{1.0}$; 5-min mean)

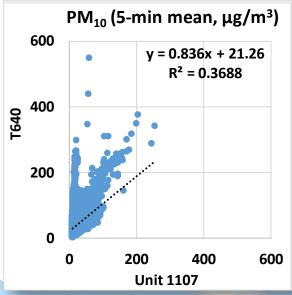

- Airly sensors showed strong correlations with the corresponding T640 data (0.79 < R² < 0.90)
- Overall, the Airly sensors underestimated the PM_{1.0} mass concentration as measured by the T640
- The Airly sensors seemed to track the diurnal PM_{1.0} variations as recorded by the T640

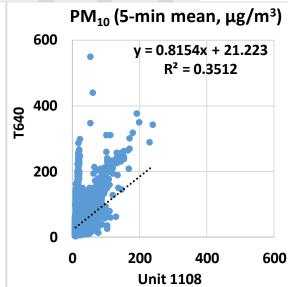


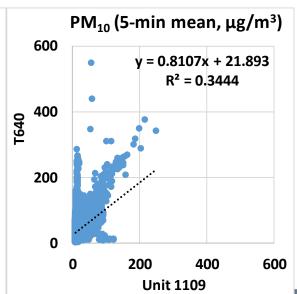


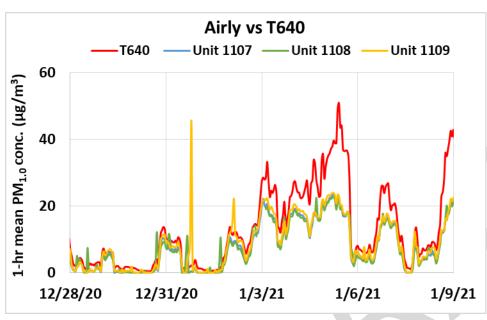

Airly vs FEM T640 (PM_{2.5}; 5-min mean)

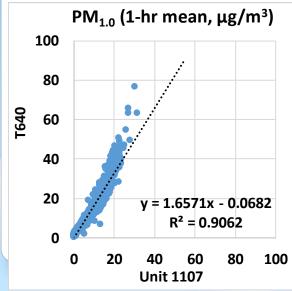

- Airly sensors showed strong correlations with the corresponding FEM T640 data (0.83 < R² < 0.89)
- Overall, the Airly sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The Airly sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

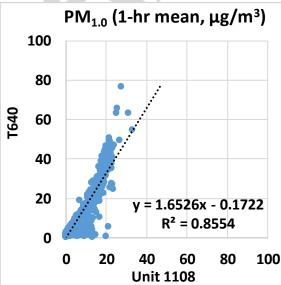


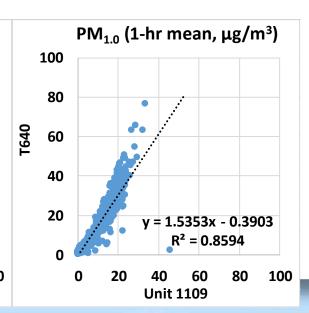


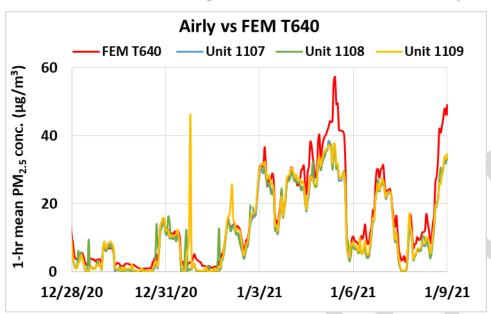

Airly vs T640 (PM_{10} ; 5-min mean)

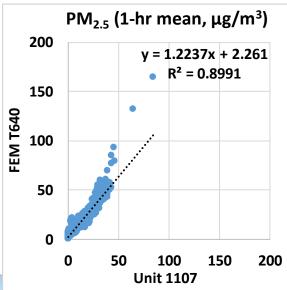

- Airly sensors showed weak correlations with the corresponding T640 data (0.34 < R² < 0.37)
- Overall, the Airly sensors underestimated the PM₁₀ mass concentration as measured by the T640
- The Airly sensors did not seem to track the diurnal PM₁₀ variations as recorded by the T640

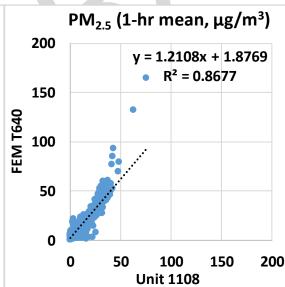


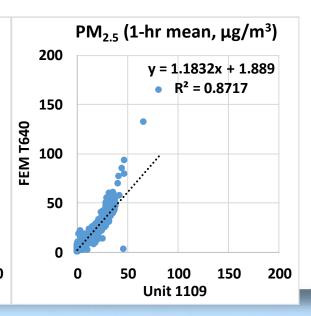


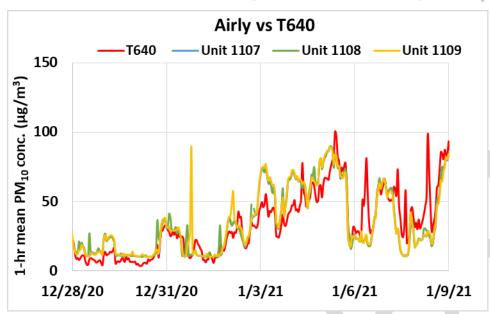

Airly vs T640 ($PM_{1.0}$; 1-hr mean)

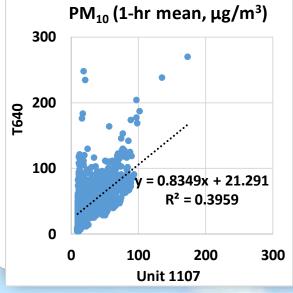

- Airly sensors showed strong to very strong correlations with the corresponding T640 data (0.85 < R² < 0.91)
- Overall, the Airly sensors underestimated the PM_{1.0} mass concentration as measured by the T640
- The Airly sensors seemed to track the diurnal PM_{1.0} variations as recorded by the T640

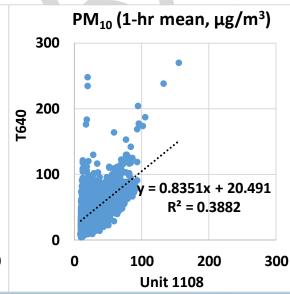


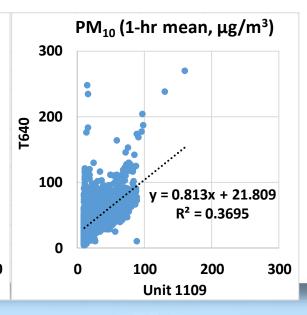


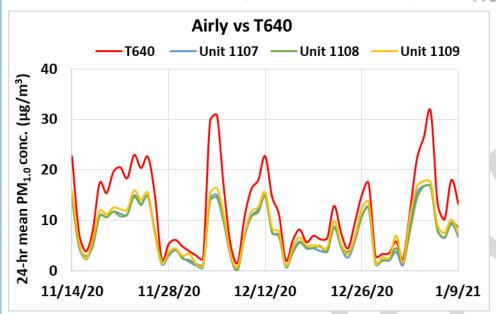

Airly vs FEM T640 ($PM_{2.5}$; 1-hr mean)

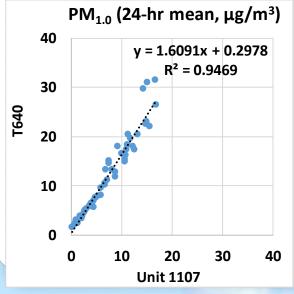

- Airly sensors showed strong correlations with the corresponding FEM T640 data (0.86 < R² < 0.90)
- Overall, the Airly sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The Airly sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

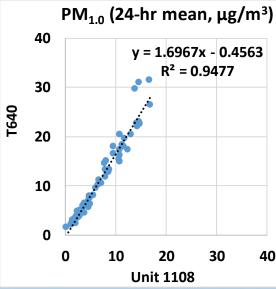


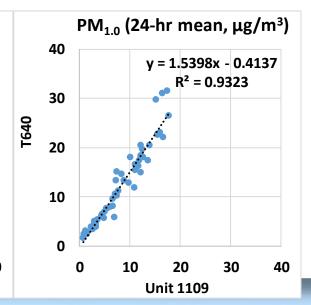


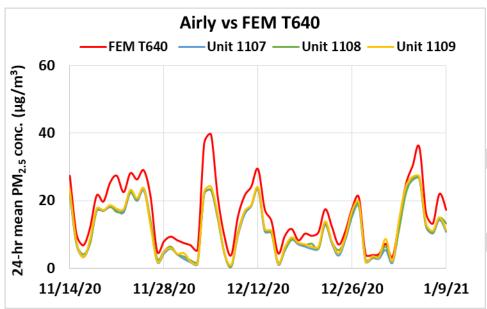

Airly vs T640 (PM_{10} ; 1-hr mean)

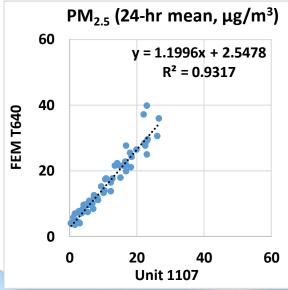

- Airly sensors showed weak correlations with the corresponding T640 data (0.36 < R² < 0.40)
- Overall, the Airly sensors underestimated the PM₁₀ mass concentration as measured by the T640
- The Airly sensors did not seem to track the diurnal PM₁₀ variations as recorded by the T640

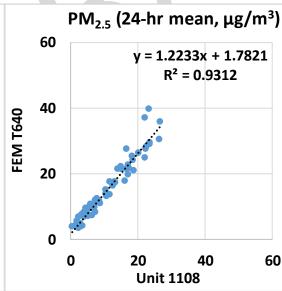


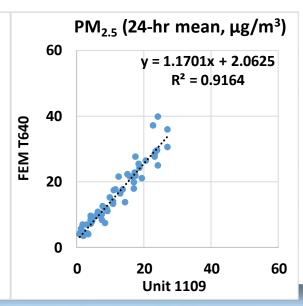


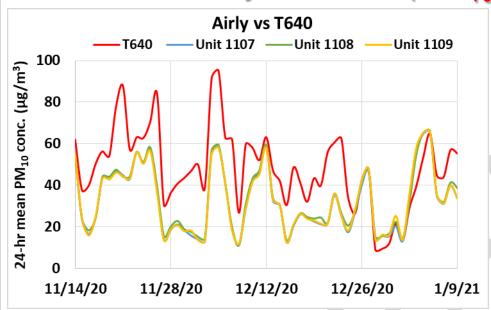

Airly vs T640 ($PM_{1.0}$; 24-hr mean)


- Airly sensors showed very strong correlations with the corresponding T640 data (0.93 < R² < 0.95)
- Overall, the Airly sensors underestimated the PM_{1.0} mass concentration as measured by the T640
- The Airly sensors seemed to track the diurnal PM_{1.0} variations as recorded by the T640

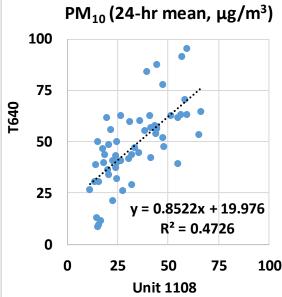


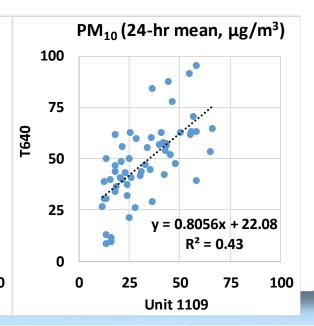


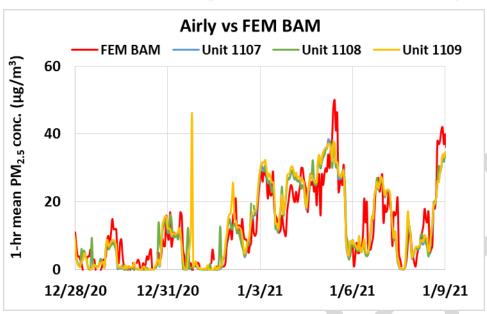

Airly vs FEM T640 ($PM_{2.5}$; 24-hr mean)

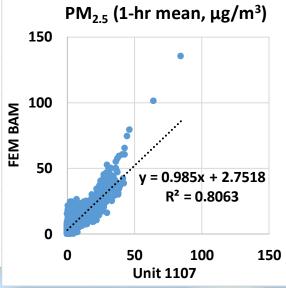

- Airly sensors showed very strong correlations with the corresponding FEM T640 data (0.91 < R² < 0.94)
- Overall, the Airly sensors underestimated the PM_{2.5} mass concentration as measured by the FEM T640
- The Airly sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

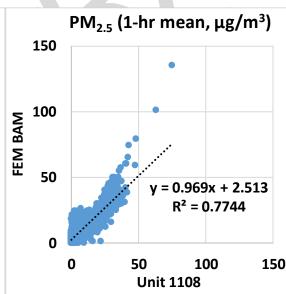


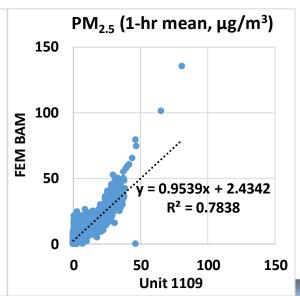


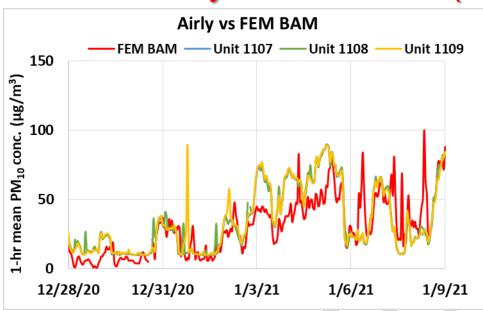

Airly vs T640 (PM_{10} ; 24-hr mean)

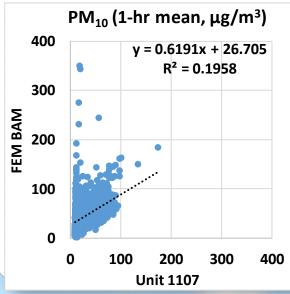

- Airly sensors showed weak correlations with the corresponding T640 data (0.43 < R² < 0.48)
- Overall, the Airly sensors underestimated the PM₁₀ mass concentration as measured by the T640
- The Airly sensors did not seem to track the diurnal PM₁₀ variations as recorded by the T640

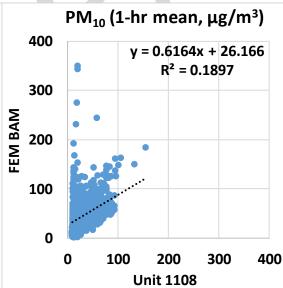


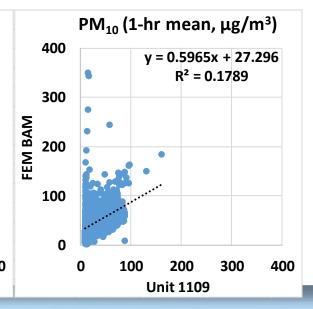


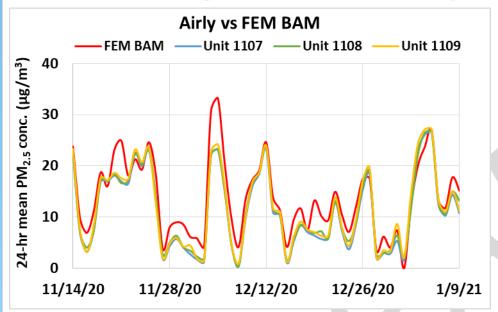

Airly vs FEM BAM (PM_{2.5}; 1-hr mean)

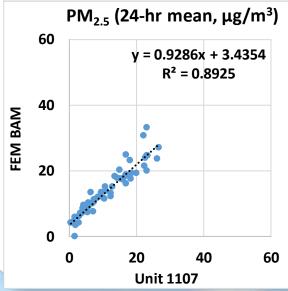

- Airly sensors showed strong correlations with the corresponding FEM BAM data (0.77 < R² < 0.81)
- Overall, the Airly sensors underestimated the PM_{2.5} mass concentration as measured by the FEM BAM
- The Airly sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM BAM

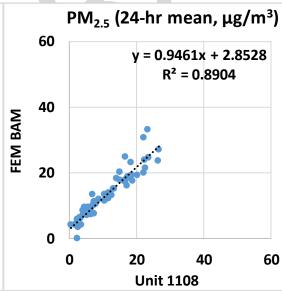


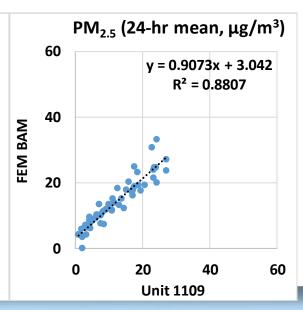


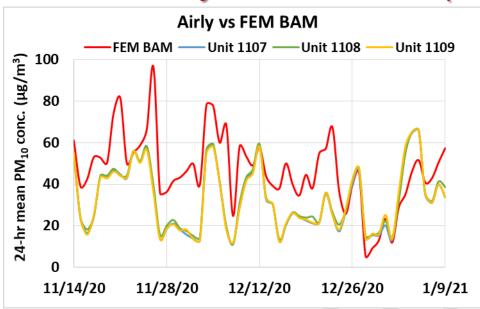

Airly vs FEM BAM (PM₁₀; 1-hr mean)

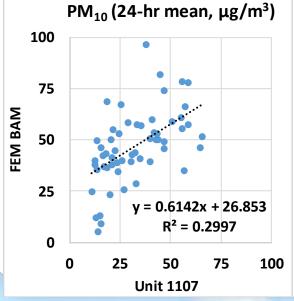

- Airly sensors showed very weak correlations with the corresponding FEM BAM data (0.17 < R² < 0.20)
- Overall, the Airly sensors underestimated the PM₁₀ mass concentration as measured by the FEM BAM
- The Airly sensors did not seem to track the diurnal PM₁₀ variations as recorded by the FFM BAM

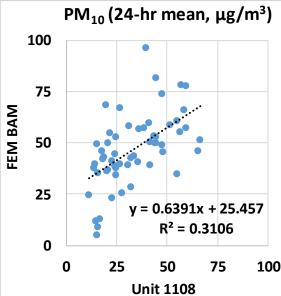


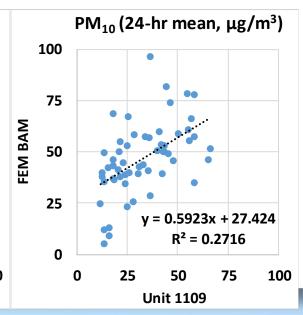



Airly vs FEM BAM (PM_{2.5}; 24-hr mean)


- Airly sensors showed strong correlations with the corresponding FEM BAM data (0.88 < R² < 0.90)
- Overall, the Airly sensors underestimated the PM_{2.5} mass concentration as measured by the FEM BAM
- The Airly sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM BAM

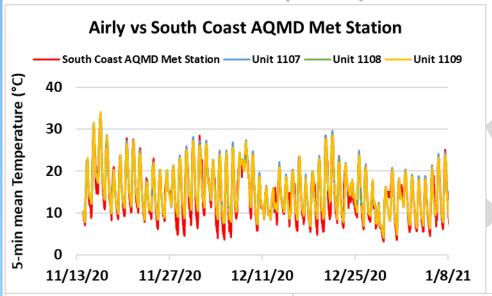




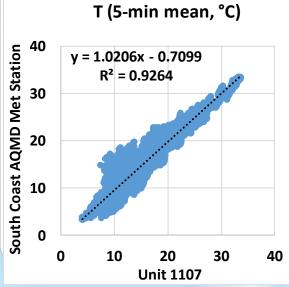

Airly vs FEM BAM (PM₁₀; 24-hr mean)

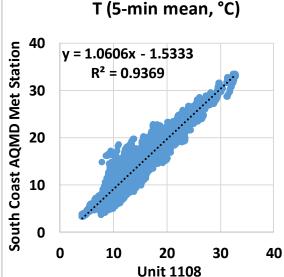
- Airly sensors showed very weak to weak correlations with the corresponding FEM BAM data (0.27 < R² < 0.32)
- Overall, the Airly sensors underestimated the PM₁₀ mass concentration as measured by the FEM BAM
- The Airly sensors did not seem to track the diurnal PM₁₀ variations as recorded by the FFM BAM

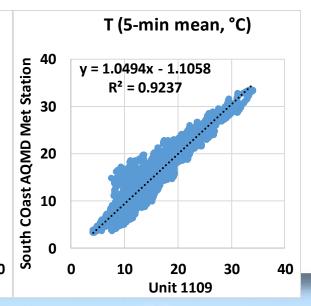
Summary: PM

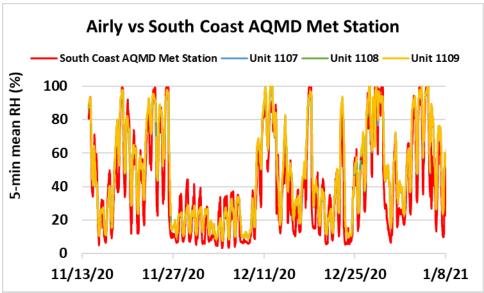

<u> </u>												
	Averaç Sensor		Airly vs T640, PM _{1.0}						T640 (PM _{1.0} , μg/m³)			
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation	
5-min	7.7	7.2	0.79 to 0.89	1.51 to 1.65	-0.17 to 0.6	-4.8 to -4.0	4.2 to 5.3	11.9 to 13.2	12.1	12.3	0.3 to 217.0	
1-hr	7.6	7.0	0.86 to 0.91	1.54 to 1.66	-0.4 to -0.07	-4.8 to -4.0	4.2 to 5.1	7.1 to 7.9	12.1	12.0	0.4 to 63.2	
24-hr	7.6	4.9	0.93 to 0.95	1.54 to 1.70	-0.4 to 0.3	-4.8 to -4.0	4.0 to 4.8	14.1 to 14.7	12.1	8.1	1.5 to 31.6	
	Averaç Sensor	•		Airly vs FEM BAM & FEM T640, PM _{2.5}						FEM BAM and FEM T640 (PM _{2.5} , μg/m ³)		
	Average (μg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation	
5-min	11.5	10.9	0.83 to 0.89	1.17 to 1.22	2.0 to 2.3	-4.8 to -4.1	4.5 to 5.0	11.1 to 12.0	15.9	14.0	0.8 to 239.7	
1-hr	11.5	10.7	0.77 to 0.90	0.95 to 1.22	1.9 to 2.8	-4.8 to -1.9	4.0 to 4.8	5.7 to 7.0	14.0 to 15.9	11.7 to 13.7	0 to 165.1	
24-hr	11.5	7.5	0.88 to 0.93	0.91 to 1.22	1.8 to 3.4	-4.6 to -2.0	2.7 to 4.8	3.3 to 5.6	14.0 to 15.9	7.2 to 9.4	3.4 to 39.7	
	Averaç Sensor	•		Airly vs FEM BAM & T640, PM ₁₀						FEM BAM and T640 (PM ₁₀ , μg/m³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m ³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation	
5-min	33.0	22.4	0.34 to 0.37	0.81 to 0.84	21.2 to 21.9	-15.9 to -15.0	10 3 to	47.0 to 47.6	48.5	30.8	1.3 to 547.2	
1-hr	33.0	21.9	0.18 to 0.40	0.60 to 0.84	20.5 to 27.3	-15.9 to -15.0	18.7 to 19.4	27.6 to 32.5	46.9 to 48.5	29.3 to 30.9	1 to 349	
24-hr	33.0	15.4	0.27 to 0.47	0.59 to 0.85	20.0 to 27.4	-15.7 to -13.1	16.4 to 17.8	20.5 to 21.4	46.9 to 48.5	17.5 to 18.9	5.4 to 96.5	

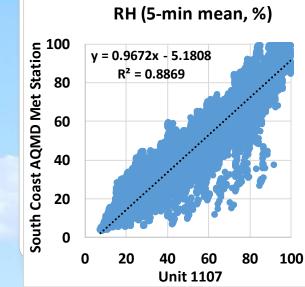
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

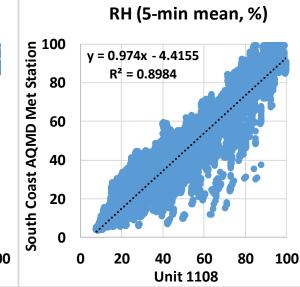

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.


³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.


Airly vs South Coast AQMD Met Station (Temp; 5-min mean)


- Airly sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.92 < R² < 0.94)
- Overall, the Airly sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Airly sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station





Airly vs South Coast AQMD Met Station (RH; 5-min mean)

- Airly sensors showed strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.89)
- Overall, the Airly sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Airly sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three Airly sensors' average data recovery for ozone, NO₂ and PM was ~ 93%, ~ 93% and ~100%; respectively.
- The absolute intra-model variability was 1.3 ppb for ozone, 4.3 ppb for NO_{2,} and 0.36, 0.29 and 0.41 μ g/m³ for PM_{1.0.} PM_{2.5} and PM₁₀, respectively.
- The reference instruments (FEM BAM and FEM T640) showed very strong and strong correlations with each other for $PM_{2.5}$ and PM_{10} mass concentration measurements ($R^2 \sim 0.91$ and $R^2 \sim 0.88$, 1-hr mean), respectively.
- During the entire field deployment testing period:
 - Ozone sensors showed very strong correlations with the FEM instrument (0.90 < R² < 0.94, 5-min mean) and overestimated the corresponding FEM data</p>
 - ➤ NO₂ sensors showed moderate to strong correlations with the FRM instrument (0.53 < R² < 0.81, 5-min mean) and overestimated the corresponding FRM data
 - The sensors showed strong to very strong correlations with the corresponding $PM_{1.0}$ data (0.85 < R^2 < 0.91, 1-hr mean); and showed strong correlations with the corresponding $PM_{2.5}$ data (0.77 < R^2 < 0.90, 1-hr mean) and very weak to weak correlations with the corresponding PM_{10} data (0.17 < R^2 < 0.40 respectively, 1-hr mean). The Airly sensors underestimated the corresponding $PM_{1.0}$, $PM_{2.5}$ and PM_{10} data.
 - ➤ Temperature and relative humidity sensors showed very strong and strong correlations with the South Coast AQMD Met Station data, respectively (T: R² ~ 0.93 and RH: R² ~ 0.89) and overestimated the T data and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- These results are still preliminary