Field Evaluation HabitatMap AirBeam3

Background

- From 02/02/2022 to 04/03/2022, three HabitatMap AirBeam3 (hereinafter AirBeam3) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>AirBeam3 (3 units tested)</u>:
 - Particle sensor: optical; non-FEM (Plantower PMS7003)
 - > Each unit reports: $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - Also measures: internal temperature (°F) and internal relative humidity (%)
 - ≻ Unit cost: \$249
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: A350, 86B4, 9FF0

- South Coast AQMD Reference Instruments:
- GRIMM EDM 180 (hereinafter FEM GRIMM for PM_{2.5}, GRIMM otherwise):
 - Optical particle counter (FEM PM_{2.5})
 - \succ Measures PM_{1.0}, PM_{2.5}, and PM₁₀ (µg/m³)
 - ➢ Cost: ~\$25,000 and up
 - ➤ Time resolution: 1-min
- Teledyne API T640 (*hereinafter FEM T640 for PM*_{2.5}, *T640 otherwise*):
 - \rightarrow Optical particle counter (FEM PM_{2.5})
 - \succ Measures PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
 - > Unit cost: ~\$21,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was 99% for all PM measurements

AirBeam3; intra-model variability

- Absolute intra-model variability was ~ 0.86, ~ 0.94 and ~ 1.14 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 16.0%, ~ 16.0% and ~ 17.9% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{1.0} GRIMM and T640

- Data recovery for $PM_{1,0}$ from GRIMM and T640 was ~ 98% and ~ 93%, respectively.
- Very strong correlations between the reference instruments for $PM_{1.0}$ measurements (R² > 0.95) were observed.

Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 was ~ 98% and ~ 93%, respectively.
- Very strong correlations between the reference instruments for $PM_{2.5}$ measurements (R² > 0.94) were observed.

Reference Instruments: PM₁₀ GRIMM and T640

- Data recovery for PM_{10} from GRIMM and T640 was ~ 98% and ~ 93%, respectively.
- Very strong correlations between the reference instruments for PM_{10} measurements (R² > 0.94) were observed.

AirBeam3 vs GRIMM (PM_{1.0}; 5-min mean)

- The AirBeam3 sensors showed very strong correlations with the corresponding GRIMM data (0.95 < R² < 0.97)
- Overall, the AirBeam3 sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The AirBeam3 sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

AirBeam3 vs FEM GRIMM (PM_{2.5}; 5-min mean)

- The AirBeam3 sensors showed strong correlations with the corresponding FEM GRIMM data (0.80 < R² < 0.83)
- Overall, the AirBeam3 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The AirBeam3 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

AirBeam3 vs GRIMM (PM₁₀; 5-min mean)

- The AirBeam3 sensors showed very weak correlations with the corresponding GRIMM data (0.19 < R² < 0.20)
- Overall, the AirBeam3 sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The AirBeam3 sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

AirBeam3 vs GRIMM (PM_{1.0}; 1-hr mean)

- The AirBeam3 sensors showed very strong correlations with the corresponding GRIMM data (0.96 < R² < 0.98)
- Overall, the AirBeam3 sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The AirBeam3 sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

AirBeam3 vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The AirBeam3 sensors showed strong correlations with the corresponding FEM GRIMM data (0.82 < R² < 0.85)
- Overall, the AirBeam3 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The AirBeam3 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

AirBeam3 vs GRIMM (PM₁₀; 1-hr mean)

- The AirBeam3 sensors showed very weak correlations with the corresponding GRIMM data (0.20 < R² < 0.22)
- Overall, the AirBeam3 sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The AirBeam3 sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

AirBeam3 vs GRIMM (PM_{1.0}; 24-hr mean)

- The AirBeam3 sensors showed very strong correlations with the corresponding GRIMM data (0.97 < R² < 0.99)
- Overall, the AirBeam3 sensors underestimated the PM_{1.0} mass concentrations as measured by GRIMM
- The AirBeam3 sensors seemed to track the PM_{1.0} diurnal variations as recorded by GRIMM

AirBeam3 vs FEM GRIMM (PM_{2.5}; 24-hr mean)

- The AirBeam3 sensors showed strong to very strong correlations with the corresponding FEM GRIMM data (0.89 < R² < 0.91)
- Overall, the AirBeam3 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The AirBeam3 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

14

AirBeam3 vs GRIMM (PM₁₀; 24-hr mean)

- The AirBeam3 sensors showed very weak correlations with the corresponding GRIMM data (0.22 < R² < 0.24)
- Overall, the AirBeam3 sensors underestimated the PM₁₀ mass concentrations as measured by GRIMM
- The AirBeam3 sensors seemed to track the PM₁₀ diurnal variations as recorded by GRIMM

AirBeam3 vs T640 (PM_{1.0}; 5-min mean)

AirBeam3 vs FEM T640 (PM_{2.5}; 5-min mean)

- The AirBeam3 sensors showed strong to very strong correlations with the corresponding FEM T640 data (0.89 < R² < 0.91)
- Overall, the AirBeam3 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The AirBeam3 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

AirBeam3 vs T640 (PM₁₀; 5-min mean)

AirBeam3 vs T640 (PM_{1.0}; 1-hr mean)

- The AirBeam3 sensors showed very strong correlations with the corresponding T640 data (0.96 < R² < 0.97)
- Overall, the AirBeam3 sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The AirBeam3 sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

AirBeam3 vs FEM T640 (PM_{2.5}; 1-hr mean)

- The AirBeam3 sensors showed very strong correlations with the corresponding FEM T640 data (0.90 < R² < 0.92)
- Overall, the AirBeam3 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The AirBeam3 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

AirBeam3 vs T640 (PM₁₀; 1-hr mean)

- The AirBeam3 sensors showed very weak correlations with the corresponding T640 data (0.26 < R² < 0.28)
- Overall, the AirBeam3 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The AirBeam3 sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

AirBeam3 vs T640 (PM_{10} ; 24-hr mean)

- Overall, the AirBeam3 sensors underestimated the PM_{1.0} mass concentrations as measured by T640 The AirBeam3 sensors seemed to track the PM_{1.0}
 - diurnal variations as recorded by T640

AirBeam3 vs FEM T640 (PM_{2.5}; 24-hr mean)

- The AirBeam3 sensors showed very strong correlations with the corresponding FEM T640 data (0.93 < R² < 0.95)
- Overall, the AirBeam3 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The AirBeam3 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

AirBeam3 vs T640 (PM₁₀; 24-hr mean)

- The AirBeam3 sensors showed weak correlations with the corresponding T640 data (0.35 < R² < 0.37)
- Overall, the AirBeam3 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The AirBeam3 sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

	Average of 3 Sensors, PM _{1.0}		AirBeam3 vs GRIMM & T640, PM _{1.0}						GRIMM & T640 (PM _{1.0} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	5.4	6.4	0.95 to 0.97	0.76 to 1.03	1.3 to 2.4	-2.5 to 0.2	1.3 to 2.6	1.6 to 2.8	6.2 to 6.8	5.5 to 5.6	0.3 to 64.1
1-hr	5.4	6.2	0.96 to 0.97	0.77 to 1.04	1.3 to 2.4	-2.5 to 0.2	1.2 to 2.5	1.5 to 2.7	6.2 to 6.8	5.4 to 5.5	0.3 to 30.9
24-hr	5.4	4.9	0.98 to 0.99	0.77 to 1.07	1.3 to 2.2	-2.5 to 0.2	1.0 to 2.5	1.2 to 2.6	6.3 to 6.9	4.3 to 4.5	0.8 to 20.3
	Average of 3 Sensors, PM _{2.5}		AirBeam3 vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	5.9	7.0	0.81 to 0.90	0.85 to 1.11	4.3 to 4.8	-5.3 to -3.3	3.6 to 5.3	4.1 to 6.2	9.7 to 10.3	6.7 to 7.3	0.7 to 79.3
1-hr	5.9	6.8	0.83 to 0.92	0.86 to 1.12	4.2 to 4.8	-5.3 to -3.3	3.5 to 5.3	4.0 to 6.1	9.7 to 10.4	6.6 to 7.1	1.0 to 35.8
24-hr	5.9	5.4	0.89 to 0.95	0.85 to 1.17	3.9 to 4.8	-5.3 to -3.3	3.3 to 5.3	3.6 to 5.6	9.8 to 10.5	5.4 to 5.5	2.7 to 25.7
	Average of 3 Sensors, PM ₁₀		AirBeam3 vs GRIMM & T640, PM ₁₀						GRIMM & T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	6.4	8.2	0.19 to 0.25	0.94 to 1.56	20.4 to 24.0	-26.8 to -20.1	20.4 to 26.8	27.4 to 32.1	27.8 to 31.8	19.9 to 20.7	1.4 to 276.2
1-hr	6.4	7.8	0.21 to 0.28	0.96 to 1.61	20.3 to 23.8	-26.8 to -20.1	20.3 to 26.8	26.6 to 31.5	27.9 to 31.8	18.9 to 19.5	2.3 to 175.9
24-hr	6.4	6.1	0.23 to 0.37	0.84 to 1.56	21.4 to 24.0	-26.8 to -20.3	20.3 to 26.8	23.0 to 28.8	28.1 to 31.9	12.4 to 12.7	6.0 to 61.0

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Discussion

- The three AirBeam3 sensors' data recovery from all units was 99% for all PM measurements
- The absolute intra-model variability was ~ 0.86, ~ 0.94 and ~ 1.14 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- Regulatory-grade instruments: Very strong correlations between GRIMM and T640 for PM_{1.0}, PM_{2.5}, and PM₁₀ (R² > 0.95, R² > 0.94, and R² > 0.94, respectively, 1-hr mean)
- PM_{1.0} mass concentrations measured by AirBeam3 sensors showed very strong correlations with the corresponding GRIMM and T640 data (0.96 < R² < 0.98, 1-hr mean). The sensors underestimated PM_{1.0} mass concentrations as measured by GRIMM and T640
- PM_{2.5} mass concentrations measured by AirBeam3 sensors showed strong to very strong correlations with the corresponding FEM GRIMM and FEM T640 data (0.82 < R² < 0.92, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by AirBeam3 sensors showed very weak correlations with the corresponding GRIMM and T640 (0.20 < R² < 0.28; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations as measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary