Field Evaluation Aeroqual S500 Particulate Matter Head

Air Quality Sensor Performance Evaluation Center

Background

- From 04/17/2020 to 06/24/2020¹, three Aeroqual S500 Particulate Matter Head (hereinafter Aeroqual S500-PM) units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- Aeroqual S500-PM (3 units tested):
 - PM Sensor Laser Particle Counter (non-FEM)
 - \succ Each unit measures: PM_{2.5} and PM₁₀ (µg/m³)
 - Unit cost: \$1490 (Series 500 base + PM head)
 - Time resolution: 5-min (1-min data optional)
 - ➤ Units IDs: 1, 2, 3

¹Note: sensor data were not available from 5/14/2020 to 5/20/2020 and from 6/2/2020 to 6/11/2020 due to preventive maintenance activities at the monitoring site.

- South Coast AQMD Reference Instruments:
 - GRIMM (FEM PM_{2.5}); cost: \$25,000 and up
 Time resolution: 1-min
 - Teledyne API T640 (FEM PM_{2.5}); cost: \$21,000
 - Time resolution: 1-min

Data Validation & Recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1, Unit 2, and Unit 3 was ~ 100% for $PM_{2.5}$, and PM_{10} measurements

Aeroqual S500-PM; Intra-model Variability

- Absolute intra-model variability was ~ 1.4 and 1.7 μg/m³ for PM_{2.5} and PM₁₀ measurements, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 11 and 7% for PM_{2.5} and PM₁₀ measurements, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM GRIMM & FEM T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{2.5} from FEM GRIMM and FEM T640 is ~88% and 77%, respectively
- Strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} measurements (R² ~ 0.79)

Reference Instruments: PM₁₀ GRIMM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{10} from GRIMM and T640 is ~88% and 77%, respectively
- Strong correlations between GRIMM and T640 for PM_{10} measurements ($R^2 \sim 0.85$)

Aeroqual S500-PM vs FEM GRIMM (PM_{2.5}; 5-min mean)

Aeroqual S500-PM vs GRIMM (PM₁₀; 5-min mean)

Aeroqual S500-PM vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The Aeroqual S500-PM sensors showed moderate correlations with the corresponding FEM GRIMM data (R² ~ 0.65)
- Overall, the Aeroqual S500-PM sensors underestimated the PM_{2.5} mass concentrations as measured by the FEM GRIMM

 The Aeroqual S500-PM sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM GRIMM

Aeroqual S500-PM vs GRIMM (PM₁₀; 1-hr mean)

- The Aeroqual S500-PM sensors showed very weak correlations with the corresponding GRIMM data (R² ~ 0.27)
- Overall, the Aeroqual S500-PM sensors underestimated the PM₁₀ mass concentration as measured by the GRIMM
- The Aeroqual S500-PM sensors did not seem to track the diurnal PM₁₀ variations as recorded by the GRIMM

Aeroqual S500-PM vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Aeroqual S500-PM vs GRIMM (PM₁₀; 24-hr mean)

Aeroqual S500-PM vs FEM T640 (PM_{2.5}; 5-min mean)

Aeroqual S500-PM vs T640 (PM₁₀; 5-min mean)

Aeroqual S500-PM vs FEM T640 (PM_{2.5}; 1-hr mean)

- Aeroqual S500-PM sensors showed weak to moderate correlations with the corresponding FEM T640 data (0.46 < R² < 0.62)
- Overall, the Aeroqual S500-PM sensors underestimated the PM_{2.5} mass concentrations as measured by the FEM T640
- The Aeroqual S500-PM sensors seemed to track the diurnal PM_{2.5} variations as recorded by the FEM T640

Aeroqual S500-PM vs T640 (PM₁₀; 1-hr mean)

- The Aeroqual S500-PM sensors very weak to weak correlations with the corresponding T640 data (0.19 < R² < 0.31)
- Overall, the Aeroqual S500-PM sensors underestimated the PM₁₀ mass concentrations as measured by the T640
- The Aeroqual S500-PM sensors did not seem to track the diurnal PM₁₀ variations as recorded by the T640

Aeroqual S500-PM vs FEM T640 (PM_{2.5}; 24-hr mean)

Unit 3

Unit 2

Unit 1

Aeroqual S500-PM vs T640 (PM₁₀; 24-hr mean)

- The Aeroqual S500-PM sensors showed very weak to weak correlations with the corresponding T640 data (0.24 < R² < 0.46)
- Overall, the Aeroqual S500-PM sensors underestimated the PM₁₀ mass concentrations as measured by the T640
- The Aeroqual S500-PM sensors did not seem to track the diurnal PM₁₀ variations as recorded by the T640

Discussion

- The three Aeroqual S500-PM sensors' data recovery from Unit 1, Unit 2 and Unit 3 was ~ 100% for PM_{2.5} and PM₁₀ measurements.
- Absolute intra-model variability was ~ 1.4 and 1.7 μ g/m³ for PM_{2.5}, and PM₁₀ measurements, respectively.
- The reference instruments (GRIMM and T640) showed strong correlations with each other for PM_{2.5} mass concentration measurements (R² ~ 0.79, 1-hr mean) and PM₁₀ mass concentration measurements (R² ~ 0.85, 1-hr mean).
- PM_{2.5} mass concentrations measured by Aeroqual S500-PM sensor showed moderate correlations with the corresponding FEM GRIMM (R² ~ 0.65; 1-hr mean) and weak to moderate correlations with the corresponding FEM T640 data (0.46 < R² < 0.62; 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640.
- PM₁₀ mass concentrations measured by Aeroqual S500-PM sensors showed very weak correlations with the GRIMM (R² ~ 0.27; 1-hr mean) and very weak to weak correlations with the T640 data (0.19 < R² < 0.31; 1-hr mean). The sensors underestimated PM₁₀ mass concentrations measured by GRIMM and T640.
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- These results are still preliminary