Field Evaluation Aeroqual AQY (v1.0) – PM₁₀

Background

- From 10/29/2020 to 12/24/2020, three Aeroqual AQY v1.0 multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants.
- <u>Aeroqual AQY v1.0 (3 units tested</u>):
 - Sensors: Ozone Gas Sensitive Semiconductor (GSS);
 - NO₂ Gas Sensitive Electrochemical (GSE) (non-FEM/non-FRM);
 - PM Laser Particle Counter (LPC) (non-FEM), (model SDS011 by Nova Fitness)
 - Each unit measures: O₃ (ppb), NO₂ (ppb), PM_{2.5} (µg/m³), PM₁₀ (µg/m³), T (°C), RH (%)
 - Unit cost: ~\$3,000 w/ modem (\$4000 including 2-yr care package with cloud software and remote tech support)
 - Time resolution: 1-min
 - ➤ Units IDs: 1062, 1068, 1098
 - Differences from AQY v0.5
 - Separate USB drive memory
 - New PCB board with sensor connector
 - Real time clock added
 - Mounting bracket for Ozone, NO₂ and PM_{2.5} sensors

Note: This evaluation shows the results for PM₁₀. For evaluations of other parameters, please visit <u>http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/aeroqual-aqy-v1-0---field-evaluation.pdf?sfvrsn=21</u>

- South Coast AQMD Reference instruments:
 - Teledyne API T640 (FEM PM_{2.5}); cost: \$21,000
 - ➤ Time resolution: 1-min
 - MetOne BAM (FEM PM₁₀); cost: ~\$20,000
 Time resolution: 1-hr
 - Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for PM₁₀ from Unit 1062, Unit 1068 and Unit 1098 was 100%, 100% and 86%, respectively.

Aeroqual AQY v1.0; Intra-model variability

- Absolute intra-model variability was ~ 1.58 μ g/m³ for the PM₁₀ measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 9.89% for the PM₁₀ measurements

(calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM₁₀ BAM & T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{10} from FEM BAM and T640 is ~100%
- Strong correlations between FEM BAM and T640 for PM_{10} measurements ($R^2 \sim 0.88$)

Aeroqual AQY v1.0 vs T640 (PM₁₀; 5-min mean)

Aeroqual AQY v1.0 vs T640 (PM_{10} ; 1-hr mean)

Aeroqual AQY v1.0 vs T640 (PM_{10} ; 24-hr mean)

- The Aeroqual AQY v1.0 sensors showed strong correlations with the corresponding T640 data $(0.72 < R^2 < 0.83)$
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM₁₀ mass concentration as measured by the T640
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM₁₀ variations as recorded

20

40

Unit 1098

y = 1.9843x + 24.668

 $R^2 = 0.7405$

60

80

Aeroqual AQY v1.0 vs FEM BAM (PM₁₀; 1-hr mean)

Aeroqual AQY v1.0 vs FEM BAM (PM₁₀; 24-hr mean)

- The Aeroqual AQY v1.0 sensors showed moderate correlations with the corresponding FEM BAM data (0.59 < R² < 0.70)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the PM₁₀ mass concentration as measured by the FEM BAM
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal PM₁₀ variations as recorded by the FEM BAM

Summary: PM₁₀

	Average of 3 Sensors, PM ₁₀		Aeroqual AQY v1.0 vs Reference Instruments, PM ₁₀						FEM BAM and T640 (PM ₁₀ , μg/m ³)		
Aeroqual AQY v1.0	Average (µg/m ³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	16.8	12.8	0.56 to 0.68	1.91 to 1.96	17.2 to 25.7	-35.4 to -38.8	35.4 to 38.8	41.7 to 44.1	54.3	32.3	4.1 to 748.6
1-hr	16.8	12.2	0.40 to 0.74	1.57 to 2.02	16.2 to 28.3	-33.9 to -38.8	33.9 to 38.8	40.7 to 43.2	52.7 to 54.3	30.0 to 30.7	4 to 349
24-hr	16.7	8.0	0.59 to 0.83	1.56 to 2.03	15.9 to 27.5	-33.8 to -38.8	33.5 to 38.4	35.4 to 37.4	52.2 to 53.9	16.2 to 18.3	15.3 to 96.5

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Aeroqual AQY v1.0 vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.93 < R² < 0.97)
- Overall, the Aeroqual AQY v1.0 sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Aeroqual AQY v1.0 vs South Coast AQMD Met Station (RH; 5-min mean)

- Aeroqual AQY v1.0 sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (R² ~ 0.98)
- Overall, the Aeroqual AQY v1.0 sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Aeroqual AQY v1.0 sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three Aeroqual AQY v1.0 sensors' data recovery for PM₁₀ from Unit 1062, Unit 1068 and Unit 1098 was 100%, 100% and 86%, respectively.
- The absolute intra-model variability was $1.58 \ \mu g/m^3$ for PM₁₀ measurements.
- The FEM BAM and T640 showed strong correlations for PM₁₀ mass concentration measurements (R² ~ 0.88, 1-hr mean)
- PM₁₀ mass concentrations measured by the Aeroqual AQY v1.0 sensors showed weak to strong correlations with the FEM BAM and T640 (0.39 < R² < 0.49 and 0.60 < R² < 0.74 for FEM BAM and T640, respectively, 1-hr mean) and underestimated the corresponding FEM BAM and T640 data
- Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station data (T: R² ~ 0.95 and RH: R² ~ 0.98) and overestimated the T data and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by AQ-SPEC prior to the beginning of this field testing
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions and known target and interferent pollutants concentrations.
- <u>These results are still preliminary</u>