Field Evaluation Aeroqual AQY-R

Background

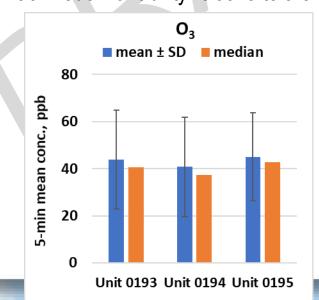
- From 04/14/2022 to 06/12/2022, three Aeroqual AQY-R multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants.
- <u>Aeroqual AQY-R (3 units tested)</u>:
 - Gas Sensors: Ozone Gas Sensitive Semiconductor (Aeroqual; MOx/GSS); NO₂ – Gas Sensitive Electrochemical (Aeroqual NO₂/MA-2, non-FEM/non-FRM)
 - PM_{2.5} Laser Particle Counter (LPC) (Nova Fitness) SDS011, non-FEM)
 - > Each unit measures: O_3 (ppb), NO_2 (ppb), $PM_{2.5}$ (µg/m³), T (°C), RH (%)
 - Unit cost: \$5,000 + \$1000 \$2000/year for cloud data and services
 - \succ Time resolution: 1-min
 - Units IDs: 0193, 0194, and 0195

- South Coast AQMD Reference instruments:
 - O₃ instrument (Teledyne T400, hereinafter FEM T400); cost: ~\$7,000
 - > Time resolution; 1-min
 - NO/NO₂ instrument (Teledyne T200, hereinafter FRM) T200); cost: ~\$11,000
 - > Time resolution: 1-min
 - PM Instrument (GRIMM EDM 180; FEM PM_{2.5}, hereinafter FEM GRIMM); cost: \$25,000 and up
 - Time resolution: 1-min
 - PM instrument (Teledyne API T640; FEM PM_{2.5}) hereinafter FEM T640); cost: \$21,000
 - Time resolution: 1-min
 - Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - Time resolution: 1-min

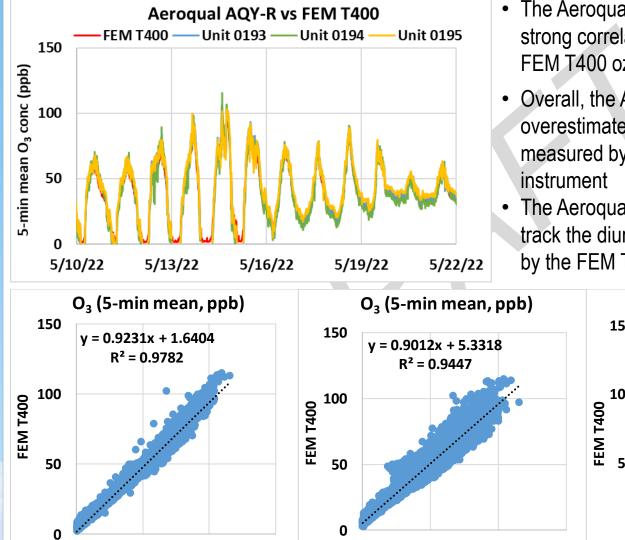
FEM GRIMM

FEM T400

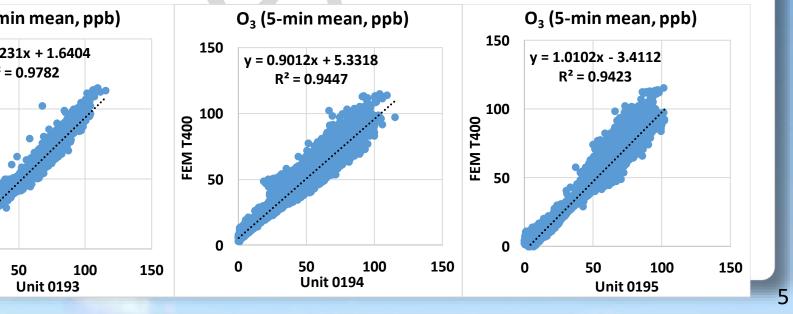
FRM T200

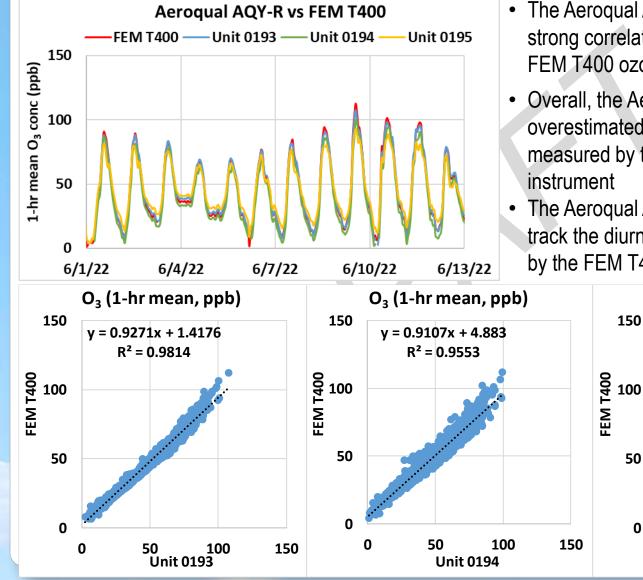

Ozone (O₃) in Aeroqual AQY-R

Data validation & recovery


- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for O₃ from Unit 0193, Unit 0194 and Unit 0195 was ~93.7%, ~93.8% and ~95.1%, respectively

Aeroqual AQY-R; Intra-model variability


- Absolute intra-model variability was ~1.8 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~4.2% for the ozone measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)


Aeroqual AQY-R vs FEM T400 (Ozone; 5-min mean)

- The Aeroqual AQY-R sensors showed very strong correlations with the corresponding FEM T400 ozone data ($0.94 < R^2 < 0.98$)
- Overall, the Aeroqual AQY-R sensors overestimated the ozone concentration as measured by the FEM T400 ozone
- The Aeroqual AQY-R sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument

Aeroqual AQY-R vs FEM T400 (Ozone; 1-hr mean)

- The Aeroqual AQY-R sensors showed very strong correlations with the corresponding FEM T400 ozone data ($0.95 < R^2 < 0.99$)
- Overall, the Aeroqual AQY-R sensors overestimated the ozone concentration as measured by the FEM T400 ozone
- The Aeroqual AQY-R sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument

 O_3 (1-hr mean, ppb)

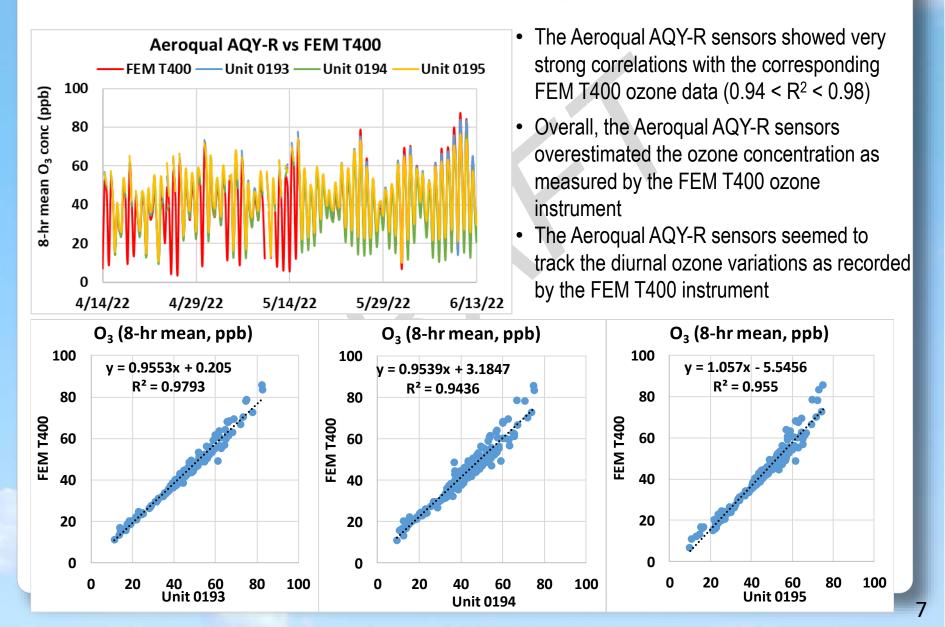
y = 1.0227x - 4.0414

 $R^2 = 0.9529$

50

0

0



150

100

Unit 0195

Aeroqual AQY-R vs FEM T400 (Ozone; 8-hr mean)

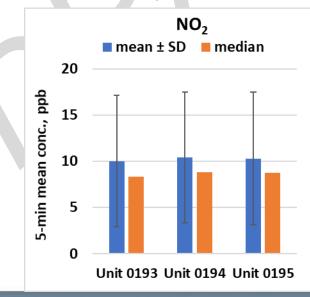
Summary: Ozone

	Averag Sensors			Aeroqual AQY-R vs FEM T400, Ozone					FEM T400, Ozone (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FEM T400 Average	FEM T400 SD	Range during the field evaluation
5-min	42.9	20.5	0.94 to 0.98	0.90 to 1.01	-3.4 to 5.3	-1.2 to 3.0	3.0 to 4.8	3.8 to 5.7	40.6	21.4	0.2 to 115.5
1-hr	43.2	20.1	0.95 to 0.98	0.91 to 1.02	-4.0 to 4.9	-1.2 to 3.0	2.8 to 4.5	3.5 to 5.3	39.2	21.1	1.5 to 112.4
8-hr	44.0	15.5	0.94 to 0.98	0.95 to 1.06	-5.5 to 3.2	-1.3 to 3.0	2.4 to 4.0	1.6 to 5.3	39.3	17.9	3.5 to 85.9

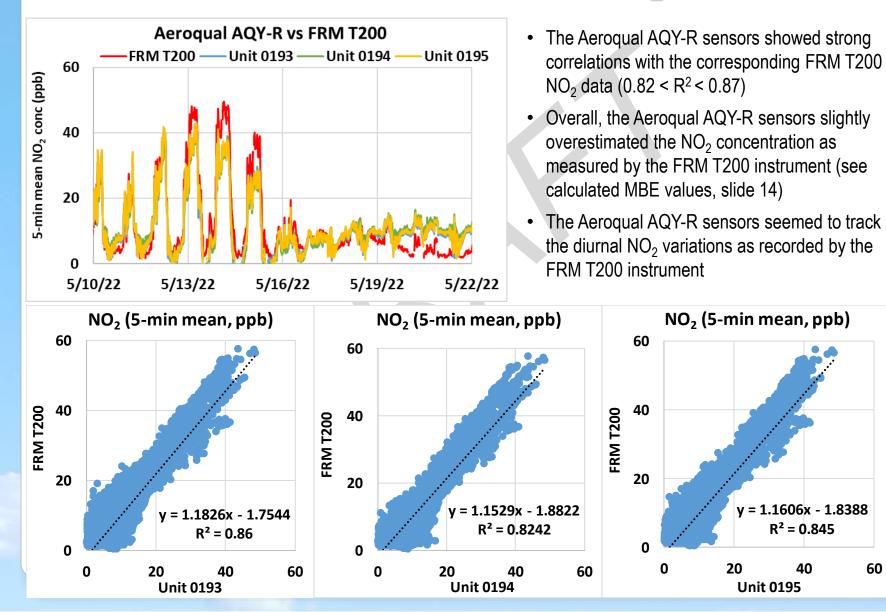
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

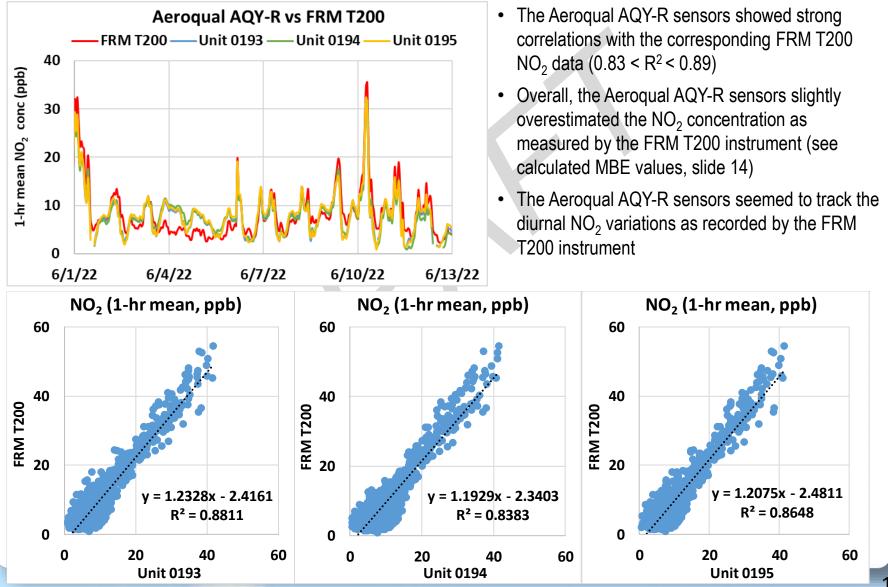
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

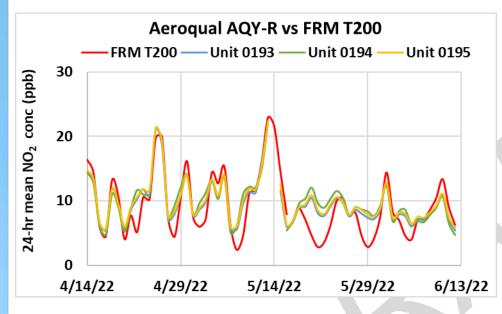

Nitrogen Dioxide (NO₂) in Aeroqual AQY-R

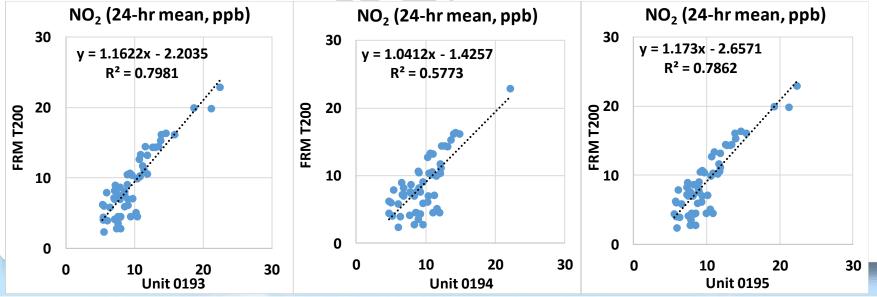
Data validation & recovery


- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ from Unit 0193, Unit 0194 and Unit 0195 was ~95.5%, ~95.9% and ~95.1%, respectively

Aeroqual AQY-R; Intra-model variability


- Absolute intra-model variability was ~0.17 ppb for the NO₂ measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~1.7% for the NO₂ measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)


Aeroqual AQY-R vs FRM T200 (NO₂; 5-min mean)


Aeroqual AQY-R vs FRM T200 (NO₂; 1-hr mean)

Aeroqual AQY-R vs FRM T200 (NO₂; 24-hr mean)

- The Aeroqual AQY-R sensors showed moderate to strong correlations with the corresponding FRM T200 NO₂ data (0.57 < R² < 0.80)
- Overall, the Aeroqual AQY-R sensors slightly overestimated the NO₂ concentration as measured by the FRM T200 instrument (see calculated MBE values, slide 14)
- The Aeroqual AQY-R sensors seemed to track the daily NO₂ variations as recorded by the FRM T200 instrument

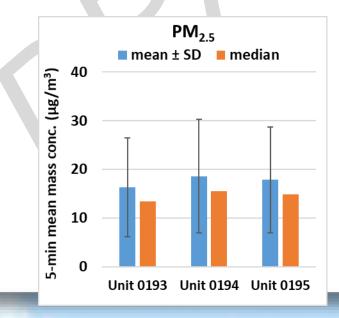
Summary: NO₂

	Average of 3 Sensors, NO ₂		Aeroqual AQY-R vs FRM T200, NO ₂							FRM T200, NO ₂ (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM T200 Average		Range during the field evaluation	
5-min	10.0	7.2	0.82 to 0.86	1.15 to 1.18	-1.9 to -1.8	-0.01 to 0.36	2.8 to 3.1	3.6 to 3.9	9.3	8.9	0.6 to 57.8	
1-hr	10.1	7.0	0.84 to 0.88	1.19 to 1.23	-2.5 to -2.3	0.09 to 0.37	2.7 to 3.1	3.6 to 3.9	9.5	9.0	0.8 to 54.7	
24-hr	9.8	3.4	0.58 to 0.80	1.04 to 1.17	-2.7 to -1.4	0.6 to 1.03	1.7 to 2.3	2.2 to 2.9	9.4	4.9	2.4 to 23.0	

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

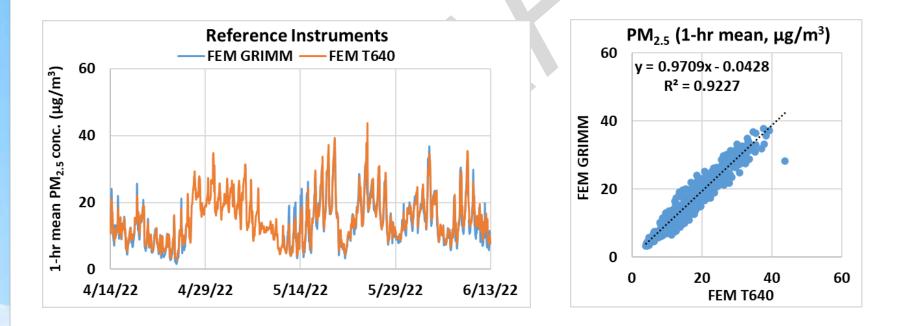
² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

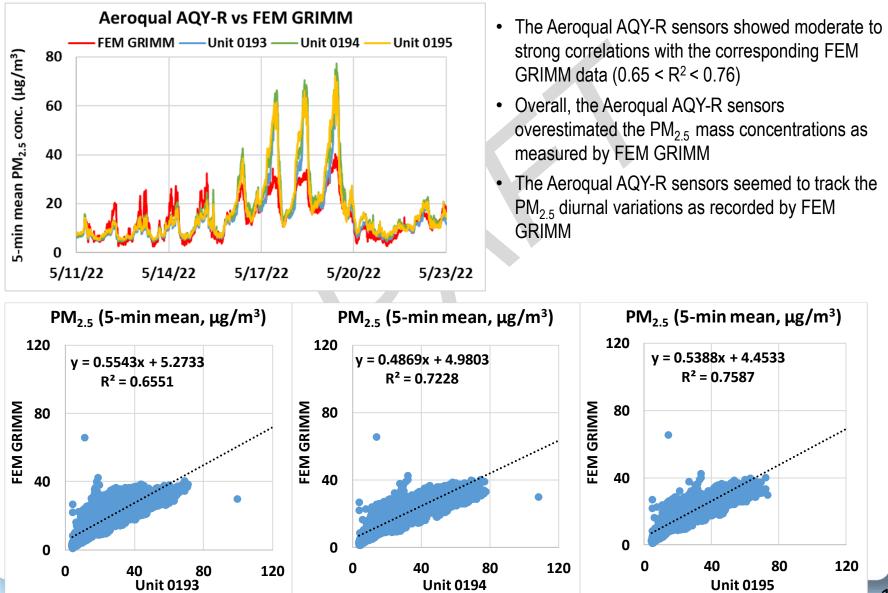

Particulate Matter (PM) in Aeroqual AQY-R

Data validation & recovery

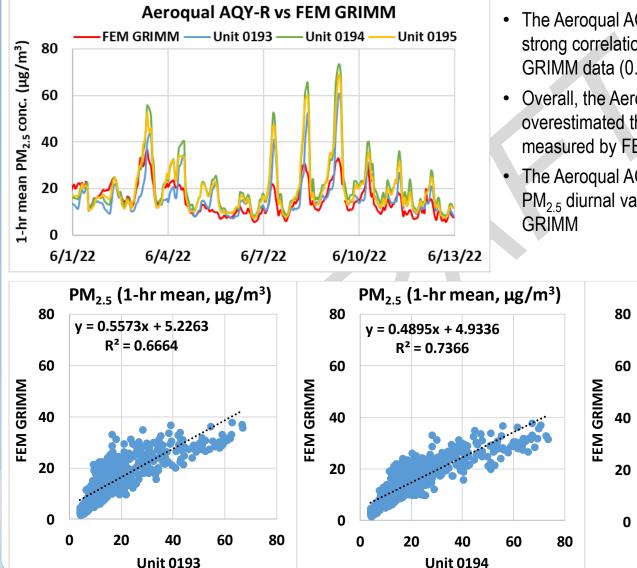
- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from all units was 100% for PM_{2.5} measurements.

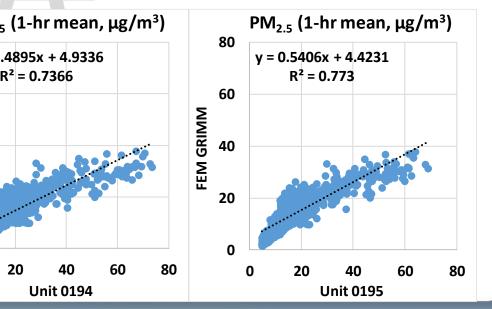

Aeroqual AQY-R; intra-model variability

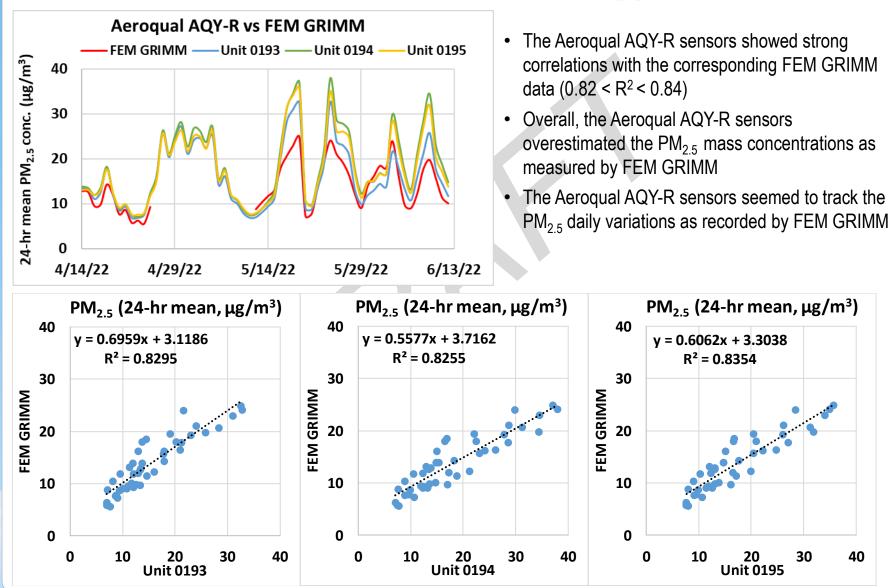
- Absolute intra-model variability was ~0.96 µg/m³ for PM_{2.5} measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~5.5% for PM_{2.5} measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

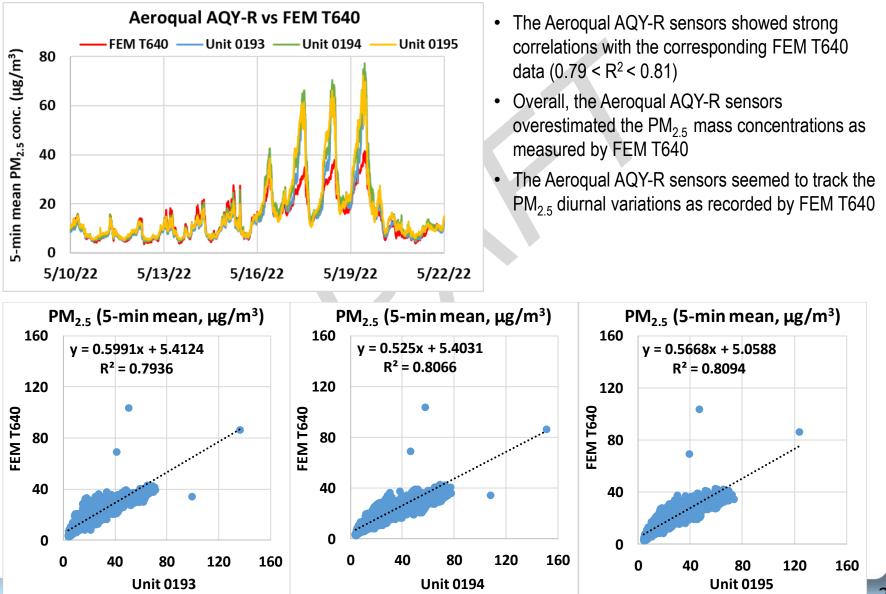


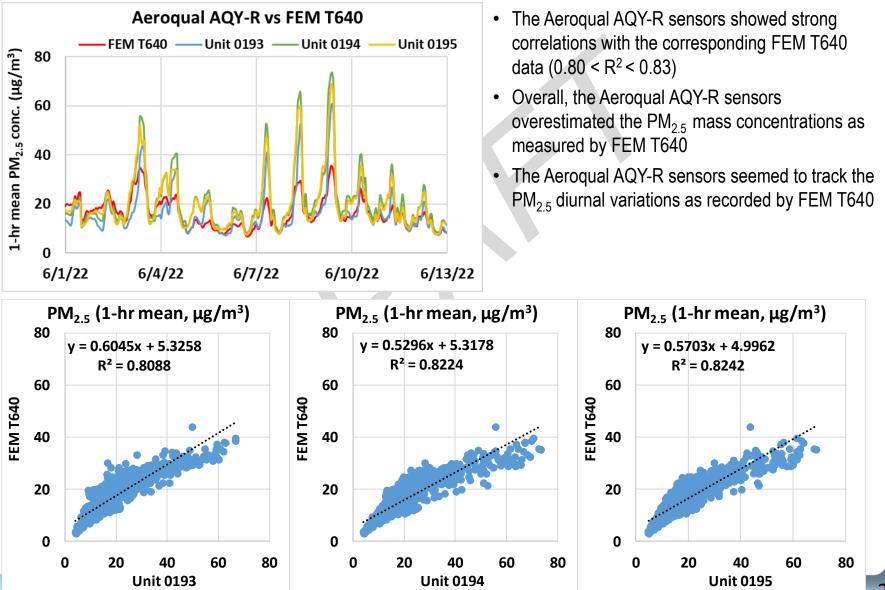
Reference Instruments: PM_{2.5} FEM GRIMM and FEM T640

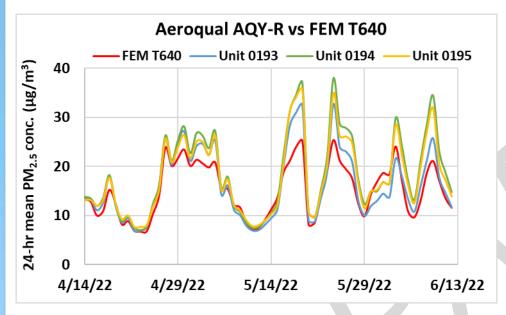

- Data recovery for $PM_{2.5}$ from FEM GRIMM and FEM T640 was ~100%.
- Very strong correlations between the reference instruments for PM_{2.5} measurements (R² ~0.92) were observed.

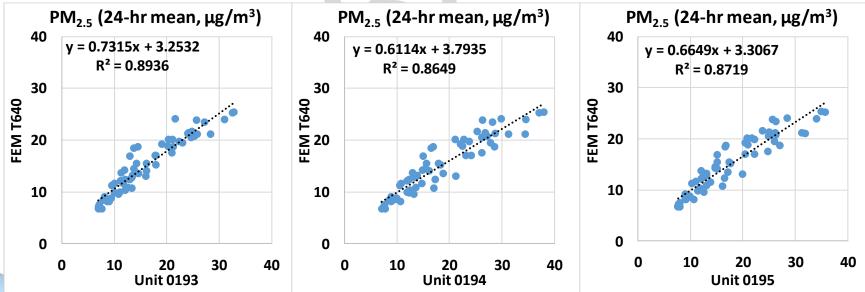

Aeroqual AQY-R vs FEM GRIMM (PM_{2.5}; 5-min mean)


Aeroqual AQY-R vs FEM GRIMM (PM_{2.5}; 1-hr mean)


- The Aeroqual AQY-R sensors showed moderate to strong correlations with the corresponding FEM GRIMM data (0.66 < R² < 0.78)
- Overall, the Aeroqual AQY-R sensors overestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Aeroqual AQY-R sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM


Aeroqual AQY-R vs FEM GRIMM (PM_{2.5}; 24-hr mean)

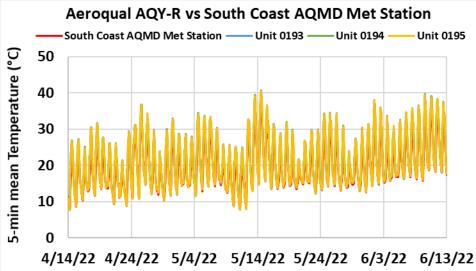

Aeroqual AQY-R vs FEM T640 (PM_{2.5}; 5-min mean)


Aeroqual AQY-R vs FEM T640 (PM_{2.5}; 1-hr mean)

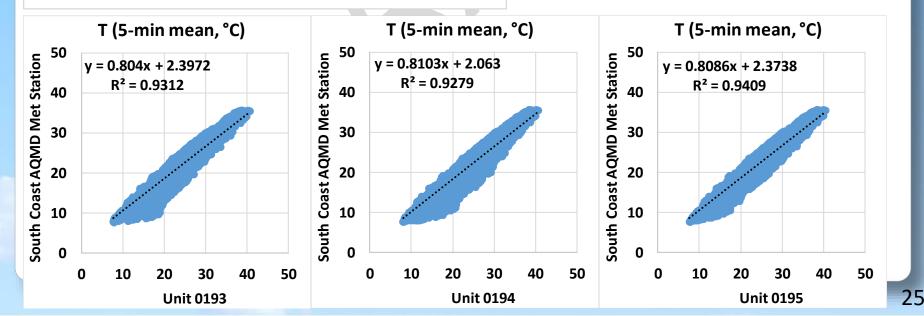
Aeroqual AQY-R vs FEM T640 (PM_{2.5}; 24-hr mean)

- The Aeroqual AQY-R sensors showed strong correlations with the corresponding FEM T640 data (0.86 < R² < 0.90)
- Overall, the Aeroqual AQY-R sensors overestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Aeroqual AQY-R sensors seemed to track the PM_{2.5} daily variations as recorded by FEM T640

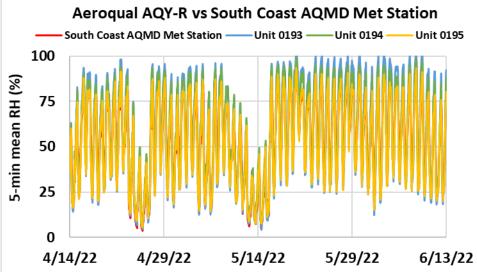
Summary: PM

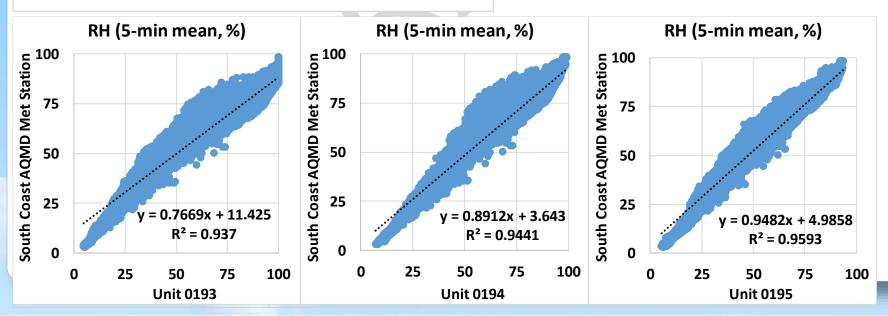

	Average of 3 Sensors, PM _{2.5}		Aeroqual AQY-R vs FEM GRIMM & FEM T640, PM _{2.5}						FEM GRIMM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	17.6	10.9	0.66 to 0.81	0.49 to 0.60	4.5 to 5.4	1.1 to 4.3	2.9 to 5.1	5.2 to 8.5	13.8 to 15.2	6.9 to 7.1	1.2 to 103.6
1-hr	17.6	10.8	0.67 to 0.82	0.49 to 0.60	4.4 to 5.3	1.1 to 4.3	2.9 to 5.0	5.1 to 8.3	13.7 to 15.2	6.8 to 6.9	1.5 to 43.8
24-hr	17.6	7.6	0.83 to 0.89	0.56 to 0.73	3.1 to 3.8	1.1 to 4.3	2.1 to 4.7	2.8 to 6.2	13.9 to 15.2	5.3 to 5.4	5.6 to 25.4

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).


² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.


Aeroqual AQY-R vs South Coast AQMD Met Station (Temp; 5-min mean)


- The Aeroqual AQY-R sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.92 < R² < 0.95)
- Overall, the Aeroqual AQY-R sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Aeroqual AQY-R sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Aeroqual AQY-R vs South Coast AQMD Met Station (RH; 5-min mean)

- Aeroqual AQY-R sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.93 < R² < 0.96)
- Overall, the Aeroqual AQY-R sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Aeroqual AQY-R sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three Aeroqual AQY-R sensors' data recovery for O₃ and NO₂ was ~94% and ~95.5%, respectively; and for PM_{2.5} measurements was 100%.
- The absolute intra-model variability for O₃ and NO₂ was ~1.8 ppb and ~0.17 ppb, respectively. Absolute intra-model variability for PM_{2.5} measurements was ~0.96 μg/m³.
- Reference instruments: very strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~0.92, 1-hr mean) mass concentration measurements
- During the <u>entire</u> field deployment testing period:
 - Ozone sensors showed very strong correlations with the FEM T400 instrument (0.94 < R² < 0.98, 5-min mean) and generally overestimated the corresponding FEM T400 data</p>
 - NO₂ sensors showed strong correlations with the FRM T200 instrument (0.82 < R² < 0.87, 5-min mean) and overestimated the corresponding FRM T200 data</p>
 - The Aeroqual AQY-R sensors showed moderate to strong correlations with the corresponding reference PM_{2.5} data (0.66 < R² < 0.83, 1-hr mean). The sensors overestimated PM_{2.5} mass concentrations as measured by FEM GRIMM and FEM T640
 - Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station T and RH data (R² ~0.93 for T and R² ~0.95 for RH) and overestimated the T and RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by South Coast AQMD staff for this evaluation.
- A MOMA calibration for O₃, NO₂ and PM_{2.5} was performed prior to the beginning of this evaluation.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- <u>These results are still preliminary</u>